120 resultados para Stress-based forming limit


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the details of an experimental study of a cold-formed steel hollow flange channel beam known as LiteSteel beam (LSB) subject to web crippling under End Two Flange (ETF) and Interior Two Flange (ITF) load cases. The LSB sections with two rectangular hollow flanges are made using a simultaneous cold-forming and electric resistance welding process. Due to the geometry of the LSB, and its unique residual stress characteristics and initial geometric imperfections, much of the existing research for common cold-formed steel sections is not directly applicable to LSB. Experimental and numerical studies have been carried out to evaluate the behaviour and design of LSBs subject to pure bending, predominant shear and combined actions. To date, however, no investigation has been conducted on the web crippling behaviour and strength of LSB sections. Hence an experimental study was conducted to investigate the web crippling behaviour and capacities of LSBs. Twenty-eight web crippling tests were conducted under ETF and ITF load cases, and the ultimate web crippling capacities were compared with the predictions from the design equations in AS/NZS 4600 and AISI S100. This comparison showed that AS/NZS 4600 and AISI S100 web crippling design equations are unconservative for LSB sections under ETF and ITF load cases. Hence new equations were proposed to determine the web crippling capacities of LSBs based on experimental results. Suitable design rules were also developed under the direct strength method (DSM) format.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Occupational standards concerning allowable concentrations of chemical compounds in the ambient air of workplaces have been established in several countries worldwide. With the integration of the European Union (EU), there has been a need of establishing harmonised Occupational Exposure Limits (OEL). The European Commission Directive 95/320/EC of 12 July 1995 has given the tasks to a Scientific Committee for Occupational Exposure Limits (SCOEL) to propose, based on scientific data and where appropriate, occupational limit values which may include the 8-h time-weighted average (TWA), short-term limits/excursion limits (STEL) and Biological Limit Values (BLVs). In 2000, the European Union issued a list of 62 chemical substances with Occupational Exposure Limits. Of these, 25 substances received a "skin" notation, indicating that toxicologically significant amounts may be taken up via the skin. For such substances, monitoring of concentrations in ambient air may not be sufficient, and biological monitoring strategies appear of potential importance in the medical surveillance of exposed workers. Recent progress has been made with respect to formulation of a strategy related to health-based BLVs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over the past 20 years the labour market, workforce and work organisation of most if not all industrialised countries have been significantly refashioned by the increased use of more flexible work arrangements, variously labelled as precarious employment or contingent work. There is now a substantial and growing body of international evidence that many of these arrangements are associated with a significant deterioration in occupational health and safety (OHS), using a range of measures such as injury rates, disease, hazard exposures and work-related stress. Moreover, there is an emerging body of evidence that these arrangements pose particular problems for conventional regulatory regimes. Recognition of these problems has aroused the concern of policy makers - especially in Europe, North America and Australia - and a number of responses have been adopted in terms of modifying legislation, producing new guidance material and codes of practice and revised enforcement practices. This article describes one such in itiative in Australia with regard to home-based clothing workers. The regulatory strategy developed in one Australian jurisdiction (and now being ‘exported’ into others) seeks to counter this process via contractual tracking mechanisms to follow the work, tie in liability and shift overarching legal responsibility to the top of the supply chain. The process also entails the integration of minimum standards relating to wages, hours and working conditions; OHS and access to workers’ compensation. While home-based clothing manufacture represents a very old type of ‘flexible’ work arrangement, it is one that regulators have found especially difficult to address. Further, the elaborate multi-tiered subcont racting and diffuse work locations found in this industry are also characteristic of newer forms of contingent work in other industries (such as some telework) and the regulatory challenges they pose (such as the tendency of elaborate supply chains to attenuate and fracture statutory responsibilities, at least in terms of the attitudes and behaviour of those involved).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrochemical aptamer-based (E-AB) sensors represent an emerging class of recently developed sensors. However, numerous of these sensors are limited by a low surface density of electrode-bound redox-oligonucleotides which are used as probe. Here we propose to use the concept of electrochemical current rectification (ECR) for the enhancement of the redox signal of E-AB sensors. Commonly, the probe-DNA performs a change in conformation during target binding and enables a nonrecurring charge transfer between redox-tag and electrode. In our system, the redox-tag of the probe-DNA is continuously replenished by solution-phase redox molecules. A unidirectional electron transfer from electrode via surface-linked redox-tag to the solution-phase redox molecules arises that efficiently amplifies the current response. Using this robust and straight-forward strategy, the developed sensor showed a substantial signal amplification and consequently improved sensitivity with a calculated detection limit of 114 nM for ATP, which was improved by one order of magnitude compared with the amplification-free detection and superior to other previous detection results using enzymes or nanomaterials-based signal amplification. To the best of our knowledge, this is the first demonstration of an aptamer-based electrochemical biosensor involving electrochemical rectification, which can be presumably transferred to other biomedical sensor systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Improving symptom management for palliative care patients has obvious benefits for patients and advantages for the clinicians, as workload demands and work-related stress can be reduced when the emergent symptoms of patients are managed in a timely manner. The use of emergency medication kits (EMKs) can provide such timely symptom relief. The purpose of this study was to conduct a survey of a local service to examine views on medication management before and after the implementation of an EMK and to conduct a nationwide prevalence survey examining the use of EMKs in Australia. Most respondents from community palliative care services indicated that EMKs were not being supplied to palliative care patients but believed such an intervention could improve patient care.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This report presents the findings from a study of the financial impact of work-integrated learning commonly referred to as 'placement' among social work and human services students. Based on a survey of 214 respondants, 14 in-depth interviews and two focus groups, the findings indicate that two thirds of the surveyed group felt tired and anxious about their experience of balancing paid work and placement, with 2 in 5 reporting their learning experience was compromised as a result. The significant implications and potential solutions are also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the mining optimisation literature, most researchers focused on two strategic-level and tactical-level open-pit mine optimisation problems, which are respectively termed ultimate pit limit (UPIT) or constrained pit limit (CPIT). However, many researchers indicate that the substantial numbers of variables and constraints in real-world instances (e.g., with 50-1000 thousand blocks) make the CPIT’s mixed integer programming (MIP) model intractable for use. Thus, it becomes a considerable challenge to solve the large scale CPIT instances without relying on exact MIP optimiser as well as the complicated MIP relaxation/decomposition methods. To take this challenge, two new graph-based algorithms based on network flow graph and conjunctive graph theory are developed by taking advantage of problem properties. The performance of our proposed algorithms is validated by testing recent large scale benchmark UPIT and CPIT instances’ datasets of MineLib in 2013. In comparison to best known results from MineLib, it is shown that the proposed algorithms outperform other CPIT solution approaches existing in the literature. The proposed graph-based algorithms leads to a more competent mine scheduling optimisation expert system because the third-party MIP optimiser is no longer indispensable and random neighbourhood search is not necessary.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Workplace stress has been an increasing concern in the construction industry. Workers are working longer hours and construction managers’ responsibilities are becoming more complex and complicated due to reduced resources and widespread stakeholder involvements. These additional pressures potentially trigger workplace stress and impact on project performance. The purpose of this study is to examine and advance understanding of stress and its impact relationships that support holistic and strategic stress management. 17 key stress sources are identified with their impact relationships on different stress types examined. Based on the research findings, this paper concludes with a Stressor-Stress-Performance relationships map.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The self-assembly of layered molybdenum disulfide–graphene (MoS2–Gr) and horseradish peroxidase (HRP) by electrostatic attraction into a novel hybrid nanomaterial (HRP–MoS2–Gr) is reported. The properties of the MoS2–Gr were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (TEM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). UV–vis and Fourier transform infrared spectroscopy (FT-IR) indicate that the native structure of the HRP is maintained after the assembly, implying good biocompatibility of MoS2–Gr nanocomposite. Furthermore, the HRP–MoS2–Gr composite is utilized as a biosensor, which displays electrocatalytic activity to hydrogen peroxide (H2O2) with high sensitivity (679.7 μA mM−1 cm−2), wide linear range (0.2 μM–1.103 mM), low detection limit (0.049 μM), and fast amperometric response. In addition, the biosensor also exhibits strong anti-interference ability, satisfactory stability and reproducibility. These desirable electrochemical properties are attributed to the good biocompatibility and electron transport efficiency of the MoS2–Gr composite, as well as the high loading of HRP. Therefore, this biosensor is potentially suitable for H2O2 analysis in environmental, pharmaceutical, food or industrial applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanofibers of sodium vanadate, consisting of very thin negatively charged layers and exchangeable sodium ions between the layers, are efficient sorbents for the removal of radioactive 137Cs+ and 85Sr2+ cations from water. The exchange of 137Cs+ or 85Sr2+ ions with the interlayer Na+ ions eventually triggered structural deformation of the thin layers, trapping the 137Cs+ and 85Sr2+ ions in the nanofibers. Furthermore, when the nanofibers were dispersed in a AgNO3 solution at pH >7, well-dispersed Ag2O nanocrystals formed by firmly anchoring themselves on the fiber surfaces along planes of crystallographic similarity with those of Ag2O. These nanocrystals can efficiently capture I– anions by forming a AgI precipitate, which was firmly attached to the substrates. We also designed sorbents that can remove 137Cs+ and 125I– ions simultaneously for safe disposal by optimizing the Ag2O loading and sodium content of the vanadate. This study confirms that sorbent features such as fibril morphology, negatively charged thin layers and readily exchangeable Na+ ions between the layers, and the crystal planes for the formation of a coherent interface with Ag2O nanocrystals on the fiber surface are very important for the simultaneous uptake of cations and anions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The “third-generation” 3D graphene structures, T-junction graphene micro-wells (T-GMWs) are produced on cheap polycrystalline Cu foils in a single-step, low-temperature (270 °C), energy-efficient, and environment-friendly dry plasma-enabled process. T-GMWs comprise vertical graphene (VG) petal-like sheets that seemlessly integrate with each other and the underlying horizontal graphene sheets by forming T-junctions. The microwells have the pico-to-femto-liter storage capacity and precipitate compartmentalized PBS crystals. The T-GMW films are transferred from the Cu substrates, without damage to the both, in de-ionized or tap water, at room temperature, and without commonly used sacrificial materials or hazardous chemicals. The Cu substrates are then re-used to produce similar-quality T-GMWs after a simple plasma conditioning. The isolated T-GMW films are transferred to diverse substrates and devices and show remarkable recovery of their electrical, optical, and hazardous NO2 gas sensing properties upon repeated bending (down to 1 mm radius) and release of flexible trasparent display plastic substrates. The plasma-enabled mechanism of T-GMW isolation in water is proposed and supported by the Cu plasma surface modification analysis. Our GMWs are suitable for various optoelectronic, sesning, energy, and biomedical applications while the growth approach is potentially scalable for future pilot-scale industrial production.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cardiovascular disease is the leading causes of death in the developed world. Wall shear stress (WSS) is associated with the initiation and progression of atherogenesis. This study combined the recent advances in MR imaging and computational fluid dynamics (CFD) and evaluated the patient-specific carotid bifurcation. The patient was followed up for 3 years. The geometry changes (tortuosity, curvature, ICA/CCA area ratios, central to the cross-sectional curvature, maximum stenosis) and the CFD factors (Velocity distribute, Wall Shear Stress (WSS) and Oscillatory Shear Index (OSI)) were compared at different time points.The carotid stenosis was a slight increase in the central to the cross-sectional curvature, and it was minor and variable curvature changes for carotid centerline. The OSI distribution presents ahigh-values in the same region where carotid stenosis and normal border, indicating complex flow and recirculation.The significant geometric changes observed during the follow-up may also cause significant changes in bifurcation hemodynamics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Rupture of atheromatous plaque in the carotid artery often leads to thrombosis and subsequent stroke. The mechanism of plaque rupture is not entirely clear but is thought to be a multi-factorial process involving thinning and weakening of the fibrous cap and biomechanical stress as the trigger leading to plaque rupture. As the cardiovascular system is a classic fatigue environment, the weakening of plaque leading to rupture may be a fatigue process, which is a symptomatically quiescent but potentially progressive failure process. In this study, we used a fatigue analysis based on in vivo magnetic resonance imaging (MRI) to investigate the rupture initiation location, crack propagation path and fatigue life within plaques of asymptomatic and symptomatic individuals. METHODS: Forty non-consecutive subjects (20 symptomatic and 20 asymptomatic) underwent high-resolution multi-sequence in vivo MRI of the carotid bifurcation. Fatigue analysis was performed based on the plaque geometry derived from in vivo MRI of the carotid artery at the point of maximum stenosis. Paris’ Law in fracture mechanics is adopted to determine the fatigue crack growth rate. Incremental crack propagation was dynamically simulated based on stress distributions. Plaque initiation location, crack propagation path and fatigue cycle of symptomatic and asymptomatic individuals were compared. RESULTS: Cracks were often found to begin at the lumen wall at areas of stress concentration. The preferred rupture direction was radial from the lumen center. The crack initially advanced slowly but accelerated as it developed, depending on plaque morphology. The fatigue cycles of symptomatic plaques were significantly less than those in the asymptomatic group (2.3 ± 0.9 vs 3.1 ± 0.7 (x106); p = 0.003). CONCLUSIONS: The number of cycles to rupture in symptomatic patients was higher than those predicted in asymptomatic patients by fatigue analysis, suggesting the possibility that plaques with a less fatigue life may be more prone to be symptomatic and rupture. If further validated by large-scale longitudinal studies, fatigue analysis based on high resolution in vivo MRI could potentially act as a useful tool for risk assessment of carotid atheroma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stroke is one of the leading causes of death in the world, resulting mostly from the sudden ruptures of atherosclerosis carotid plaques. Until now, the exact plaque rupture mechanism has not been fully understood, and also the plaque rupture risk stratification. The advanced multi-spectral magnetic resonance imaging (MRI) has allowed the plaque components to be visualized in-vivo and reconstructed by computational modeling. In the study, plaque stress analysis using fully coupled fluid structure interaction was applied to 20 patients (12 symptomatic and 8 asymptomatic) reconstructed from in-vivo MRI, followed by a detailed biomechanics analysis, and morphological feature study. The locally extreme stress conditions can be found in the fibrous cap region, 85% at the plaque shoulder based on the present study cases. Local maximum stress values predicted in the plaque region were found to be significantly higher in symptomatic patients than that in asymptomatic patients (200±43. kPa vs. 127±37. kPa, p=0.001). Plaque stress level, defined by excluding 5% highest stress nodes in the fibrous cap region based on the accumulative histogram of stress experienced on the computational nodes in the fibrous cap, was also significantly higher in symptomatic patients than that in asymptomatic patients (154±32. kPa vs. 111±23. kPa, p<0.05). Although there was no significant difference in lipid core size between the two patient groups, symptomatic group normally had a larger lipid core and a significantly thinner fibrous cap based on the reconstructed plaques using 3D interpolation from stacks of 2D contours. Plaques with a higher stenosis were more likely to have extreme stress conditions upstream of plaque throat. The combined analyses of plaque MR image and plaque stress will advance our understanding of plaque rupture, and provide a useful tool on assessing plaque rupture risk.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plaque rupture has been considered to be the result of its structural failure. The aim of this study is to suggest a possible link between higher stresses and rupture sites observed from in vivo magnetic resonance imaging (MRI) of transient ischemic attack (TIA) patients, by using stress analysis methods. Three patients, who had recently suffered a TIA, underwent in vivo multi-spectral MR imaging. Based on plaque geometries reconstructed from the post-rupture status, six pre-rupture plaque models were generated for each patient dataset with different reconstructions of rupture sites to bridge the gap of fibrous cap from original MRI images. Stress analysis by fluid structure interaction simulation was performed on the models, followed by analysis of local stress concentration distribution and plaque rupture sites. Furthermore, the sensitivity of stress analysis to the pre-rupture plaque geometry reconstruction was examined. Local stress concentrations were found to be located at the plaque rupture sites for the three subjects studied. In the total of 18 models created, the locations of the stress concentration regions were similar in 17 models in which rupture sites were always associated with high stresses. The local stress concentration region moved from circumferential center to the shoulder region (slightly away from the rupture site) for a case with a thick fibrous cap. Plaque wall stress level in the rupture locations was found to be much higher than the value in non-rupture locations. The good correlation between local stress concentrations and plaque rupture sites, and generally higher plaque wall stress level in rupture locations in the subjects studied could provide indirect evidence for the extreme stress-induced plaque rupture hypothesis. Local stress concentration in the plaque region could be one of the factors contributing to plaque rupture.