94 resultados para Steering wheels.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

FRDC project 2008/306 Building economic capability to improve the management of marine resources in Australia was developed and approved in response to the widespread recognition and acknowledgement of the importance of incorporating economic considerations into marine management in Australia and of the persistent undersupply of suitably trained and qualified individuals capable of providing this input. The need to address this shortfall received broad based support and following widespread stakeholder consultation and building on previous unsuccessful State-based initiatives, a collaborative, cross-jurisdictional cross-institutional capability building model was developed. The resulting project sits within the People Development Program as part of FRDC’s ‘investment in RD&E to develop the capabilities of the people to whom the industry entrusts its future’, and has addressed its objectives largely through three core activities: 1. The Fisheries Economics Graduate Research Training Program which provides research training in fisheries/marine economics through enrolment in postgraduate higher degree studies at the three participating Universities; 2. The Fisheries Economics Professional Training Program which aims to improve the economic literacy of non-economist marine sector stakeholders and was implemented in collaboration with the Seafood Cooperative Research Centre through the Future Harvest Masterclass in Fisheries Economics; and, 3. The Australian Fisheries Economics Network (FishEcon) which aims to strengthen research in the area of fisheries economics by creating a forum in which fisheries economists, fisheries managers and Ph.D. students can share research ideas and results, as well as news of upcoming research opportunities and events. These activities were undertaken by a core Project team, comprising economic researchers and teachers from each of the four participating institutions (namely the University of Tasmania, the University of Adelaide, Queensland University of Technology and the Commonwealth Scientific and Industrial Research Organisation), spanning three States and the Commonwealth. The Project team reported to and was guided by a project Steering Committee. Commensurate with the long term nature of the project objectives and some of its activities the project was extended (without additional resources) in 2012 to 30th June 2015.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reconfigurable antennas capable of radiating in only specific desired directions increase system functionality in applications like direction finding and beam steering. This paper presents the design simulation, fabrication and measurement of a horizontally polarized, direction reconfigurable Vivaldi antenna, designed for the lower-band UWB (2-6 GHz). This design employs eight circularly distributed independent Vivaldi antennas with a common port, electronically controlled by PIN diodes acting as RF switches. Experimental results show that the reconfigurable antenna has a bandwidth of 4 GHz (2-6 GHz), with 5 dB gain in the desired direction and capable of steering over the 360° range.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Antennas are a necessary and critical component of communications and radar systems, but their inability to adjust to new operating scenarios can sometimes limit the system performance. Reconfigurable antennas capable of radiating in only specific desired directions can ameliorate these restrictions and help to achieve increased functionality in applications like direction finding and beam steering. This paper presents the design simulation, fabrication and measurement of a wide-band, horizontally polarized, direction reconfigurable microstrip antenna operating at 2.45 GHz. The design employs a central horizontally polarized omnidirectional active element surrounded by electronically reconfigurable parasitic microstrip elements, controlled by PIN diodes acting as RF switches. Experimental results show that the reconfigurable antenna has a bandwidth of 40% (2-3 GHz), with 3 dB gain in the desired direction and capable of steering over the 360° range.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes a concept for a collision avoidance system for ships, which is based on model predictive control. A finite set of alternative control behaviors are generated by varying two parameters: offsets to the guidance course angle commanded to the autopilot and changes to the propulsion command ranging from nominal speed to full reverse. Using simulated predictions of the trajectories of the obstacles and ship, compliance with the Convention on the International Regulations for Preventing Collisions at Sea and collision hazards associated with each of the alternative control behaviors are evaluated on a finite prediction horizon, and the optimal control behavior is selected. Robustness to sensing error, predicted obstacle behavior, and environmental conditions can be ensured by evaluating multiple scenarios for each control behavior. The method is conceptually and computationally simple and yet quite versatile as it can account for the dynamics of the ship, the dynamics of the steering and propulsion system, forces due to wind and ocean current, and any number of obstacles. Simulations show that the method is effective and can manage complex scenarios with multiple dynamic obstacles and uncertainty associated with sensors and predictions.