124 resultados para Spectrum decomposition
Resumo:
The provision of visual support to individuals with an autism spectrum disorder (ASD) is widely recommended. We explored one mechanism underlying the use of visual supports: efficiency of language processing. Two groups of children, one with and one without an ASD, participated. The groups had comparable oral and written language skills and nonverbal cognitive abilities. In two semantic priming experiments, prime modality and prime–target relatedness were manipulated. Response time and accuracy of lexical decisions on the spoken word targets were measured. In the first uni-modal experiment, both groups demonstrated significant priming effects. In the second experiment which was cross-modal, no effect for relatedness or group was found. This result is considered in the light of the attentional capacity required for access to the lexicon via written stimuli within the developing semantic system. These preliminary findings are also considered with respect to the use of visual support for children with ASD.
Resumo:
Results of experimental investigations on the relationship between nanoscale morphology of carbon doped hydrogenated silicon-oxide (SiOCH) low-k films and their electron spectrum of defect states are presented. The SiOCH films have been deposited using trimethylsilane (3MS) - oxygen mixture in a 13.56 MHz plasma enhanced chemical vapor deposition (PECVD) system at variable RF power densities (from 1.3 to 2.6 W/cm2) and gas pressures of 3, 4, and 5 Torr. The atomic structure of the SiOCH films is a mixture of amorphous-nanocrystalline SiO2-like and SiC-like phases. Results of the FTIR spectroscopy and atomic force microscopy suggest that the volume fraction of the SiC-like phase increases from ∼0.2 to 0.4 with RF power. The average size of the nanoscale surface morphology elements of the SiO2-like matrix can be controlled by the RF power density and source gas flow rates. Electron density of the defect states N(E) of the SiOCH films has been investigated with the DLTS technique in the energy range up to 0.6 eV from the bottom of the conduction band. Distinct N(E) peaks at 0.25 - 0.35 eV and 0.42 - 0.52 eV below the conduction band bottom have been observed. The first N(E) peak is identified as originated from E1-like centers in the SiC-like phase. The volume density of the defects can vary from 1011 - 1017 cm-3 depending on specific conditions of the PECVD process.
Resumo:
In this paper we demonstrate that existing cooperative spectrum sensing formulated for static primary users cannot accurately detect dynamic primary users regardless of the information fusion method. Performance error occurs as the sensing parameters calculated by the conventional detector result in sensing performance that violates the sensing requirements. Furthermore, the error is accumulated and compounded by the number of cooperating nodes. To address this limitation, we design and implement the duty cycle detection model for the context of cooperative spectrum sensing to accurately calculate the sensing parameters that satisfy the sensing requirements. We show that longer sensing duration is required to compensate for dynamic primary user traffic.
Resumo:
This study analyzes the management of air pollutant substance in Chinese industrial sectors from 1998 to 2009. Decomposition analysis applying the logarithmic mean divisia index is used to analyze changes in emissions of air pollutants with a focus on the following five factors: coal pollution intensity (CPI), end-of-pipe treatment (EOP), the energy mix (EM), productive efficiency change (EFF), and production scale changes (PSC). Three pollutants are the main focus of this study: sulfur dioxide (SO2), dust, and soot. The novelty of this paper is focusing on the impact of the elimination policy on air pollution management in China by type of industry using the scale merit effect for pollution abatement technology change. First, the increase in SO2 emissions from Chinese industrial sectors because of the increase in the production scale is demonstrated. However, the EOP equipment that induced this change and improvements in energy efficiency has prevented an increase in SO2 emissions that is commensurate with the increase in production. Second, soot emissions were successfully reduced and controlled in all industries except the steel industry between 1998 and 2009, even though the production scale expanded for these industries. This reduction was achieved through improvements in EOP technology and in energy efficiency. Dust emissions decreased by nearly 65% between 1998 and 2009 in the Chinese industrial sectors. This successful reduction in emissions was achieved by implementing EOP technology and pollution prevention activities during the production processes, especially in the cement industry. Finally, pollution prevention in the cement industry is shown to result from production technology development rather than scale merit. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
This study analyzes toxic chemical substance management in three U.S. manufacturing sectors from 1991 to 2008. Decomposition analysis applying the logarithmic mean Divisia index is used to analyze changes in toxic chemical substance emissions by the following five factors: cleaner production, end-of-pipe treatment, transfer for further management, mixing of intermediate materials, and production scale. Based on our results, the chemical manufacturing sector reduced toxic chemical substance emissions mainly via end-of-pipe treatment. In the meantime, transfer for further management contributed to the reduction of toxic chemical substance emissions in the metal fabrication industry. This occurred because the environmental business market expanded in the 1990s, and the infrastructure for the recycling of metal and other wastes became more efficient. Cleaner production is the main contributor to toxic chemical reduction in the electrical product industry. This implies that the electrical product industry is successful in developing a more environmentally friendly product design and production process.
Resumo:
This study decomposed the determinants of environmental quality into scale, technique, and composition effects. We applied a semiparametric method of generalized additive models, which enabled us to use flexible functional forms and include several independent variables in the model. The differences in the technique effect were found to play a crucial role in reducing pollution. We found that the technique effect was sufficient to reduce sulfur dioxide emissions. On the other hand, its effect was not enough to reduce carbon dioxide (CO2) emissions and energy use, except for the case of CO2 emissions in high-income countries.
Resumo:
The thermal decomposition process of kaolinite–potassium acetate intercalation complex has been studied using simultaneous thermogravimetry coupled with Fourier-transform infrared spectroscopy and mass spectrometry (TG-FTIR-MS). The results showed that the thermal decomposition of the complex took place in four temperature ranges, namely 50–100, 260–320, 320–550, and 650–780 °C. The maximal mass losses rate for the thermal decomposition of the kaolinite–potassium acetate intercalation complex was observed at 81, 296, 378, 411, 486, and 733 °C, which was attributed to (a) loss of the adsorbed water, (b) thermal decomposition of surface-adsorbed potassium acetate (KAc), (c) the loss of the water coordinated to potassium acetate in the intercalated kaolinite, (d) the thermal decomposition of intercalated KAc in the interlayer of kaolinite and the removal of inner surface hydroxyls, (e) the loss of the inner hydroxyls, and (f) the thermal decomposition of carbonate derived from the decomposition of KAc. The thermal decomposition of intercalated potassium acetate started in the range 320–550 °C accompanied by the release of water, acetone, carbon dioxide, and acetic acid. The identification of pyrolysis fragment ions provided insight into the thermal decomposition mechanism. The results showed that the main decomposition fragment ions of the kaolinite–KAc intercalation complex were water, acetone, carbon dioxide, and acetic acid. TG-FTIR-MS was demonstrated to be a powerful tool for the investigation of kaolinite intercalation complexes. It delivers a detailed insight into the thermal decomposition processes of the kaolinite intercalation complexes characterized by mass loss and the evolved gases.
Resumo:
There is substantial evidence for facial emotion recognition (FER) deficits in autism spectrum disorder (ASD). The extent of this impairment, however, remains unclear, and there is some suggestion that clinical groups might benefit from the use of dynamic rather than static images. High-functioning individuals with ASD (n = 36) and typically developing controls (n = 36) completed a computerised FER task involving static and dynamic expressions of the six basic emotions. The ASD group showed poorer overall performance in identifying anger and disgust and were disadvantaged by dynamic (relative to static) stimuli when presented with sad expressions. Among both groups, however, dynamic stimuli appeared to improve recognition of anger. This research provides further evidence of specific impairment in the recognition of negative emotions in ASD, but argues against any broad advantages associated with the use of dynamic displays.
Resumo:
Research indicates significant health disparities for individuals with autism. Insight into characteristic sensory, cognitive, communication, social, emotional, and behavioural challenges that may influence health communication for patients with autism is vital to address potential disparities. Women with high functioning autism spectrum disorder (ASD) may have specific healthcare needs, and are likely to independently represent themselves and others in healthcare. A pilot study compared perceptions of healthcare experiences for women with and without ASD using on-line survey based on characteristics of ASD likely to influence healthcare. Fifty-eight adult female participants (32 with ASD diagnosis, 26 without ASD diagnosis) were recruited on-line from autism support organisations. Perceptions measured included self-reporting of pain and symptoms, healthcare seeking behaviours, the influence of emotional distress, sensory and social anxiety, maternity experiences, and the influence of autistic status disclosure. Results partially support the hypothesis that ASD women experience greater healthcare challenges. Women with ASD reported greater challenges in healthcare anxiety, communication under emotional distress, anxiety relating to waiting rooms, support during pregnancy, and communication during childbirth. Self-disclosure of diagnostic status and lack of ASD awareness by healthcare providers rated as highly problematic. Results offer detailed insight into healthcare communication and disparities for women with ASD.
Resumo:
In an estuary, mixing and dispersion are the result of the combination of large scale advection and small scale turbulence which are both complex to estimate. A field study was conducted in a small sub-tropical estuary in which high frequency (50 Hz) turbulent data were recorded continuously for about 48 hours. A triple decomposition technique was introduced to isolate the contributions of tides, resonance and turbulence in the flow field. A striking feature of the data set was the slow fluctuations which exhibited large amplitudes up to 50% the tidal amplitude under neap tide conditions. The triple decomposition technique allowed a characterisation of broader temporal scales of high frequency fluctuation data sampled during a number of full tidal cycles.