418 resultados para Space representations
Resumo:
The effects of simulated low earth orbit conditions on vinylidene-fluoride based thin-film piezoelectrics for use in lightweight, large surface area spacecraft such as telescope mirrors and antennae is presented. The environmental factors considered as having the greatest potential to cause damage are temperature, atomic oxygen and vacuum UV radiation. Using the piezoelectric strain coefficients and bimorph deflection measurements the piezoelectric performance over the temperature range -100 to +150°C was studied. The effects of simultaneous AO/VUV exposure were also examined and films characterized by their piezoelectric, surface, and thermal properties. Two fluorinated piezoelectric polymers, poly(vinylidene fluoride) and poly(vinylidene fluoride-co-trifluoroethylene), were adversely affected at elevated temperatures due to depoling caused by randomization of the dipole orientation, while AO/VUV contributed little to depoling but did cause significant surface erosion and, in the case of P(VDF-TrFE), bulk crosslinking. These results highlight the importance of materials selection for use in space environments.
Resumo:
Piezoelectric polymers based on polyvinylidene fluoride (PVDF) are of interest for large aperture space-based telescopes. Dimensional adjustments of adaptive polymer films are achieved via charge deposition and require a detailed understanding of the piezoelectric material responses which are expected to suffer due to strong vacuum UV, gamma, X-ray, energetic particles and atomic oxygen under low earth orbit exposure conditions. The degradation of PVDF and its copolymers under various stress environments has been investigated. Initial radiation aging studies using gamma- and e-beam irradiation have shown complex material changes with significant crosslinking, lowered melting and Curie points (where observable), effects on crystallinity, but little influence on overall piezoelectric properties. Surprisingly, complex aging processes have also been observed in elevated temperature environments with annealing phenomena and cyclic stresses resulting in thermal depoling of domains. Overall materials performance appears to be governed by a combination of chemical and physical degradation processes. Molecular changes are primarily induced via radiative damage, and physical damage from temperature and AO exposure is evident as depoling and surface erosion. Major differences between individual copolymers have been observed providing feedback on material selection strategies.
Resumo:
Gabor representations have been widely used in facial analysis (face recognition, face detection and facial expression detection) due to their biological relevance and computational properties. Two popular Gabor representations used in literature are: 1) Log-Gabor and 2) Gabor energy filters. Even though these representations are somewhat similar, they also have distinct differences as the Log-Gabor filters mimic the simple cells in the visual cortex while the Gabor energy filters emulate the complex cells, which causes subtle differences in the responses. In this paper, we analyze the difference between these two Gabor representations and quantify these differences on the task of facial action unit (AU) detection. In our experiments conducted on the Cohn-Kanade dataset, we report an average area underneath the ROC curve (A`) of 92.60% across 17 AUs for the Gabor energy filters, while the Log-Gabor representation achieved an average A` of 96.11%. This result suggests that small spatial differences that the Log-Gabor filters pick up on are more useful for AU detection than the differences in contours and edges that the Gabor energy filters extract.
Resumo:
The focus of this paper questions how the performance place was transformed to a performance space. This major change in distinction holds an ongoing significance to the development of the actors, scenographers, animators, writers and film directors craft within current digitally mediated and interactive performance environments. As part of this discussion this paper traces the crucial seed of the revolution that transformed modern scenographic practice from the droll of the romantic realism of the Victorian stage to the open potential of the performance environment of today. This is achieved through close readings on the practical work of Edward Gordon Craig and Adolphe Appia as well as the scenographic discussions of Chris Baugh.
Resumo:
This paper investigates virtual reality representations of the 1599 Boar’s Head Theatre and the Rose Theatre, two renaissance places and spaces. These models become a “world elsewhere” in that they represent virtual recreations of these venues in as much detail as possible. The models are based on accurate archeological and theatre historical records and are easy to navigate particularly for current use. This paper demonstrates the ways in which these models can be instructive for reading theatre today. More importantly we introduce human figures onto the stage via motion capture which allows us to explore the potential between space, actor and environment. This facilitates a new way of thinking about early modern playwrights’ “attitudes to locality and localities large and small”. These venues are thus activated to intersect productively with early modern studies so that the paper can test the historical and contemporary limits of such research.
Resumo:
This paper introduces three approaches to unlocking the degrees of “truth” within photographs published in newspapers by exploring the genres of Press photography, Photojournalism and Documentary photography. This is brought into context through a study of photographs appearing in The Australian newspaper during 2001 when the Norwegian freighter, the MV Tampa, rescued boat people whose vessel had sunk off the West Australian coast in 2001, and two months later the Children Overboard incident occurred.
Resumo:
Presentation about information modelling and artificial intelligence, semantic structure, cognitive processing and quantum theory.