159 resultados para Skin Permeability Coefficients
Resumo:
Since the advent of cytogenetic analysis, knowledge about fundamental aspects of cancer biology has increased, allowing the processes of cancer development and progression to be more fully understood and appreciated. Classical cytogenetic analysis of solid tumors had been considered difficult, but new advances in culturing techniques and the addition of new cytogenetic technologies have enabled a more comprehensive analysis of chromosomal aberrations associated with solid tumors. Our purpose in this review is to discuss the cytogenetic findings on a number of nonmelanoma skin cancers, including squamous- and basal cell carcinomas, keratoacanthoma, squamous cell carcinoma in situ (Bowen's disease), and solar keratosis. Through classical cytogenetic techniques, as well as fluorescence-based techniques such as fluorescence in situ hybridization and comparative genomic hybridization, numerous chromosomal alterations have been identified. These aberrations may aid in further defining the stages and classifications of nonmelanoma skin cancer and also may implicate chromosomal regions involved in progression and metastatic potential. This information, along with the development of newer technologies (including laser capture microdissection and comparative genomic hybridization arrays) that allow for more refined analysis, will continue to increase our knowledge about the role of chromosomal events at all stages of cancer development and progression and, more specifically, about how they are associated with nonmelanoma skin cancer.
Resumo:
In recent years, with the development of techniques in modern molecular biology, it has become possible to study the genetic basis of carcinogenesis down to the level of DNA sequence. Major advances have been made in our understanding of the genes involved in cell cycle control and descriptions of mutations in those genes. These developments have led to the definition of the role of specific oncogenes and tumour suppressor genes in several cancers, including, for example, colon cancers and some forms of breast cancer. Work reported from our laboratory has led to the identification of a number of candidate genes involved in the development of non-melanotic skin cancers. In this chapter, we attempt to further explain the observed (phenomic) alterations in metabolic pathways associated with oxygen consumption with the changes at the genetic level.
Resumo:
Skin cancer is one of the most commonly occurring cancer types, with substantial social, physical, and financial burdens on both individuals and societies. Although the role of UV light in initiating skin cancer development has been well characterized, genetic studies continue to show that predisposing factors can influence an individual's susceptibility to skin cancer and response to treatment. In the future, it is hoped that genetic profiles, comprising a number of genetic markers collectively involved in skin cancer susceptibility and response to treatment or prognosis, will aid in more accurately informing practitioners' choices of treatment. Individualized treatment based on these profiles has the potential to increase the efficacy of treatments, saving both time and money for the patient by avoiding the need for extensive or repeated treatment. Increased treatment responses may in turn prevent recurrence of skin cancers, reducing the burden of this disease on society. Currently existing pharmacogenomic tests, such as those that assess variation in the metabolism of the anticancer drug fluorouracil, have the potential to reduce the toxic effects of anti-tumor drugs used in the treatment of non-melanoma skin cancer (NMSC) by determining individualized appropriate dosage. If the savings generated by reducing adverse events negate the costs of developing these tests, pharmacogenomic testing may increasingly inform personalized NMSC treatment.
Resumo:
This project was an observational study of outpatients following lower limb surgical procedures for removal of skin cancers. Findings highlight a previously unreported high surgical site failure rate. Results also identified four potential risk factors (increasing age, presence of leg pain, split skin graft and haematoma) which negatively impact on surgical site healing in this population.
Resumo:
Problem Queensland has the highest rates of skin cancer in the world, even after wide-ranging public programs promoting sun safety awareness. To-date, public awareness campaigns on the dangers of excessive sun exposure have been highly successful. For adolescents, however, where a significant amount of lifetime sun exposure occurs, perilous exposure still ensues, despite awareness of the risks. New frontier approaches are required to target this key audience cluster, for this significant national problem. Approach For the majority of adolescents, being part of a collective norm defines their visual, attitudinal and behavioural actions and fashion has been validated as one of the most powerful forces that can form, shape and bolster these norms. Considering clothing is the easiest method to limit the amount of skin exposed to UV, fashion (in its many subtle, yet influential guises) is proposed as an avenue to advance positive sun safe practices for adolescents. Through an action-led methodology, this research explores the potential of fashion, as one of the key parts of a complex equation, to be a prime driver to facilitate sun safety for adolescents. Findings This paper advocates that fashion, as distinguishable from clothing, has the potential to positively influence sun protective behaviour. The findings go further and recommend the use of fashion as a stealth driver for sun safety advancement, for adolescents in particular, via shifts in norms of beauty and targeted generational communication strategies. This frontier approach has the potential to significantly reduce risky sun exposure in adolescence.
Resumo:
OBJECTIVES: To provide an overview of 1) traditional methods of skin cancer early detection, 2) current technologies for skin cancer detection, and 3) evolving practice models of early detection. DATA SOURCES: Peer-reviewed databased articles and reviews, scholarly texts, and Web-based resources. CONCLUSION: Early detection of skin cancer through established methods or newer technologies is critical for reducing both skin cancer mortality and the overall skin cancer burden. IMPLICATIONS FOR NURSING PRACTICE: A basic knowledge of recommended skin examination guidelines and risk factors for skin cancer, traditional methods to further examine lesions that are suspicious for skin cancer and evolving detection technologies can guide patient education and skin inspection decisions.
Resumo:
Mobile teledermatoscopy (MTD) for the early detection of skin cancer uses smartphones with dermatoscope attachments to magnify, capture, and transfer images remotely.1 Using the asymmetry–color variation (AC) rule, consumers achieve dermoscopy sensitivity of 92.9% to 94.0% and specificity of 62.0% to 64.2% for melanoma.2 This pilot randomized trial assessed lesions of concern selected by consumers at high risk of melanoma using MTD plus the AC rule (intervention, n = 10) or the AC rule alone (control, n = 12) during skin self-examination (SSE). Also measured were lesion location patterns, lesions overlooked by participants, provisional clinical diagnoses, likelihood of malignant tumor, and participant pressure to excise lesions.
Resumo:
Importance Older men are at risk of dying of melanoma. Objective To assess attendance at and clinical outcomes of clinical skin examinations (CSEs) in older men exposed to a video-based behavioral intervention. Design, Setting, and Participants This was a behavioral randomized clinical trial of a video-based intervention in men aged at least 50 years. Between June 1 and August 31, 2008, men were recruited, completed baseline telephone interviews, and were than randomized to receive either a video-based intervention (n = 469) or brochures only (n = 461; overall response rate, 37.1%) and were again interviewed 7 months later (n = 870; 93.5% retention). Interventions Video on skin self-examination and skin awareness and written informational materials. The control group received written materials only. Main Outcomes and Measures Participants who reported a CSE were asked for the type of CSE (skin spot, partial body, or whole body), who initiated it, whether the physician noted any suspicious lesions, and, if so, how lesions were managed. Physicians completed a case report form that included the type of CSE, who initiated it, the number of suspicious lesions detected, how lesions were managed (excision, nonsurgical treatment, monitoring, or referral), and pathology reports after lesion excision or biopsy. Results Overall, 540 of 870 men (62.1%) self-reported a CSE since receiving intervention materials, and 321 of 540 (59.4%) consented for their physician to provide medical information (received for 266 of 321 [82.9%]). Attendance of any CSE was similar between groups (intervention group, 246 of 436 [56.4%]; control group, 229 of 434 [52.8%]), but men in the intervention group were more likely to self-report a whole-body CSE (154 of 436 [35.3%] vs 118 of 434 [27.2%] for control group; P = .01). Two melanomas, 29 squamous cell carcinomas, and 38 basal cell carcinomas were diagnosed, with a higher proportion of malignant lesions in the intervention group (60.0% vs 40.0% for controls; P = .03). Baseline attitudes, behaviors, and skin cancer history were associated with higher odds of CSE and skin cancer diagnosis. Conclusions and Relevance A video-based intervention may increase whole-body CSE and skin cancer diagnosis in older men. Trial Registration: anzctr.org.au Identifier: ACTRN12608000384358
Resumo:
To the editor...
Resumo:
The incidences of skin cancers resulting from chronic ultraviolet radiation (UVR) exposure are on the incline both in Australia and globally. Hence, the cellular and molecular pathways associated with UVR-induced photocarcinogenesis urgently need to be elucidated, in order to develop more robust preventative and treatment strategies against skin cancers. In vitro investigations into the effects of UVR (in particular the highly-mutagenic UVB wavelength) have, to date, mainly involved the use of cell culture and animal models. However, these models possess biological disparities to native skin, which to some extent have limited their relevance to the in vivo situation. To address this, we characterised a 3-dimensional, tissue-engineered human skin equivalent (HSE) model (consisting of primary human keratinocytes cultured on a dermal-derived scaffold) as a representation of a more physiologically-relevant platform to study keratinocyte responses to UVB. Significantly, we demonstrate that this model retains several important epidermal properties of native skin. Moreover, UVB-irradiation of the HSE constructs was shown to induce key markers of photodamage in the HSE keratinocytes, including the formation of cyclobutane pyrimidine dimers, the activation of apoptotic pathways, the accumulation of p53 and the secretion of inflammatory cytokines. Importantly, we also demonstrate that the UVB-exposed HSE constructs retain the capacity for epidermal repair and regeneration following photodamage. Together, our results demonstrate the potential of this skin equivalent model as a tool to study various aspects of the acute responses of human keratinocytes to UVB radiation damage.
Resumo:
BACKGROUND: Outdoor workers are at high risk of harmful ultraviolet radiation exposure and are identified as an at risk group for the development of skin cancer. This systematic evidence based review provides an update to a previous review published in 2007 about interventions for the prevention of skin cancer in outdoor workers. RESULTS: This review includes interventions published between 2007-2012 and presents findings about sun protection behaviours and/or objective measures of skin cancer risk. Six papers met inclusion criteria and were included in the review. Large studies with extended follow-up times demonstrated the efficacy of educational and multi-component interventions to increase sun protection, with some higher use of personal protective equipment such as sunscreen. However, there is less evidence for the effectiveness of policy or specific intervention components. CONCLUSIONS: Further research aimed at improving overall attitudes towards sun protection in outdoor workers is needed to provide an overarching framework.
Resumo:
Cryotherapy is currently used in various clinical, rehabilitative, and sporting settings. However, very little is known regarding the impact of cooling on the microcirculatory response. Objectives: The present study sought to examine the influence of two commonly employed modalities of cryotherapy, whole body cryotherapy (WBC; -110°C) and cold water immersion(CWI; 8±1°C), on skin microcirculation in the mid- thigh region. Methods: The skin area examined was a 3 × 3 cm located between the most anterior aspect of the inguinal fold and the patella. Following 10 minutes of rest, 5 healthy, active males were exposed to either WBC for 3 minutes or CWI for 5 minutes in a randomised order. Volunteers lay supine for five minutes after treatment, in order to monitor the variation of red blood cell (RBC) concentration in the region of interest for a duration of 40 minutes. Microcirculation response was assessed using a non-invasive, portable instrument known as a Tissue Viability imaging system. After a minimum of seven days, the protocol was repeated. Subjective assessment of the volunteer’s thermal comfort and thermal sensation was also recorded. Results: RBC was altered following exposure to both WBC and CWI but appeared to stabilise approximately 35 minutes after treatments. Both WBC and CWI affected thermal sensation (p < 0.05); however no betweengroup differences in thermal comfort or sensation were recorded (p > 0.05). Conclusions: As both WBC and CWI altered RBC, further study is necessary to examine the mechanism for this alteration during whole body cooling.