256 resultados para Size Distributions
Resumo:
Visiting a modern shopping center is becoming vital in our society nowadays. The fast growth of shopping center, transportation system, and modern vehicles has given more choices for consumers in shopping. Although there are many reasons for the consumers in visiting the shopping center, the influence of travel time and size of shopping center are important things to be considered towards the frequencies of visiting customers in shopping centers. A survey to the customers of three major shopping centers in Surabaya has been conducted to evaluate the Ellwood’s model and Huff’s model. A new exponent value N of 0.48 and n of 0.50 has been found from the Ellwood’s model, while a coefficient of 0.267 and an add value of 0.245 have been found from the Huff’s model.
Resumo:
This research quantitatively examines the determinants of board size and the consequence it has on the performance of large companies in Australia. In line with international and the prevalent United States research the results suggest that there is no significant relationship between board size and their subsequent performance. In examining whether more complex operations require larger boards it was found that larger firms or firms with more lines of business tended to have more directors. Data analysis from the research supports the proposition that blockholders could affect management practices and that they enhances performance as measured by shareholder return.
Resumo:
In this thesis an investigation into theoretical models for formation and interaction of nanoparticles is presented. The work presented includes a literature review of current models followed by a series of five chapters of original research. This thesis has been submitted in partial fulfilment of the requirements for the degree of doctor of philosophy by publication and therefore each of the five chapters consist of a peer-reviewed journal article. The thesis is then concluded with a discussion of what has been achieved during the PhD candidature, the potential applications for this research and ways in which the research could be extended in the future. In this thesis we explore stochastic models pertaining to the interaction and evolution mechanisms of nanoparticles. In particular, we explore in depth the stochastic evaporation of molecules due to thermal activation and its ultimate effect on nanoparticles sizes and concentrations. Secondly, we analyse the thermal vibrations of nanoparticles suspended in a fluid and subject to standing oscillating drag forces (as would occur in a standing sound wave) and finally on lattice surfaces in the presence of high heat gradients. We have described in this thesis a number of new models for the description of multicompartment networks joined by a multiple, stochastically evaporating, links. The primary motivation for this work is in the description of thermal fragmentation in which multiple molecules holding parts of a carbonaceous nanoparticle may evaporate. Ultimately, these models predict the rate at which the network or aggregate fragments into smaller networks/aggregates and with what aggregate size distribution. The models are highly analytic and describe the fragmentation of a link holding multiple bonds using Markov processes that best describe different physical situations and these processes have been analysed using a number of mathematical methods. The fragmentation of the network/aggregate is then predicted using combinatorial arguments. Whilst there is some scepticism in the scientific community pertaining to the proposed mechanism of thermal fragmentation,we have presented compelling evidence in this thesis supporting the currently proposed mechanism and shown that our models can accurately match experimental results. This was achieved using a realistic simulation of the fragmentation of the fractal carbonaceous aggregate structure using our models. Furthermore, in this thesis a method of manipulation using acoustic standing waves is investigated. In our investigation we analysed the effect of frequency and particle size on the ability for the particle to be manipulated by means of a standing acoustic wave. In our results, we report the existence of a critical frequency for a particular particle size. This frequency is inversely proportional to the Stokes time of the particle in the fluid. We also find that for large frequencies the subtle Brownian motion of even larger particles plays a significant role in the efficacy of the manipulation. This is due to the decreasing size of the boundary layer between acoustic nodes. Our model utilises a multiple time scale approach to calculating the long term effects of the standing acoustic field on the particles that are interacting with the sound. These effects are then combined with the effects of Brownian motion in order to obtain a complete mathematical description of the particle dynamics in such acoustic fields. Finally, in this thesis, we develop a numerical routine for the description of "thermal tweezers". Currently, the technique of thermal tweezers is predominantly theoretical however there has been a handful of successful experiments which demonstrate the effect it practise. Thermal tweezers is the name given to the way in which particles can be easily manipulated on a lattice surface by careful selection of a heat distribution over the surface. Typically, the theoretical simulations of the effect can be rather time consuming with supercomputer facilities processing data over days or even weeks. Our alternative numerical method for the simulation of particle distributions pertaining to the thermal tweezers effect use the Fokker-Planck equation to derive a quick numerical method for the calculation of the effective diffusion constant as a result of the lattice and the temperature. We then use this diffusion constant and solve the diffusion equation numerically using the finite volume method. This saves the algorithm from calculating many individual particle trajectories since it is describes the flow of the probability distribution of particles in a continuous manner. The alternative method that is outlined in this thesis can produce a larger quantity of accurate results on a household PC in a matter of hours which is much better than was previously achieveable.
Resumo:
European American (EA) women report greater body dissatisfaction and less dietary control than do African American (AA) women. This study investigated whether ethnic differences in dieting history contributed to differences in body dissatisfaction and dietary control, or to differential changes that may occur during weight loss and regain. Eighty-nine EA and AA women underwent dual-energy X-ray absorptiometry to measure body composition and completed questionnaires to assess body dissatisfaction and dietary control before, after, and one year following, a controlled weight-loss intervention. While EA women reported a more extensive dieting history than AA women, this difference did not contribute to ethnic differences in body dissatisfaction and perceived dietary control. During weight loss, body satisfaction improved more for AA women, and during weight regain, dietary self-efficacy worsened to a greater degree for EA women. Ethnic differences in dieting history did not contribute significantly to these differential changes. Although ethnic differences in body image and dietary control are evident prior to weight loss, and some change differentially by ethnic group during weight loss and regain, differences in dieting history do not contribute significantly to ethnic differences in body image and dietary control.
Resumo:
We investigate whether the two 2 zero cost portfolios, SMB and HML, have the ability to predict economic growth for markets investigated in this paper. Our findings show that there are only a limited number of cases when the coefficients are positive and significance is achieved in an even more limited number of cases. Our results are in stark contrast to Liew and Vassalou (2000) who find coefficients to be generally positive and of a similar magnitude. We go a step further and also employ the methodology of Lakonishok, Shleifer and Vishny (1994) and once again fail to support the risk-based hypothesis of Liew and Vassalou (2000). In sum, we argue that search for a robust economic explanation for firm size and book-to-market equity effects needs sustained effort as these two zero cost portfolios do not represent economically relevant risk.
Resumo:
Lifecycle funds offered by retirement plan providers allocate aggressively to risky asset classes when the employee participants are young, gradually switching to more conservative asset classes as they grow older and approach retirement. This approach focuses on maximizing growth of the accumulation fund in the initial years and preserving its value in the later years. The authors simulate terminal wealth outcomes based on conventional lifecycle asset allocation rules as well as on contrarian strategies that reverse the direction of asset switching. The evidence suggests that the growth in portfolio size over time significantly impacts the asset allocation decision. Due to the portfolio size effect that is observed by the authors, the terminal value of accumulation in retirement accounts is influenced more by the asset allocation strategy adopted in later years relative to that adopted in early years. By mechanistically switching to conservative assets in the later years of a plan, lifecycle strategies sacrifice significant growth opportunity and prove counterproductive to the participant's wealth accumulation objective. The authors' conclude that this sacrifice does not seem to be compensated adequately in terms of reducing the risk of potentially adverse outcomes.
Resumo:
This paper illustrates the prediction of opponent behaviour in a competitive, highly dynamic, multi-agent and partially observable environment, namely RoboCup small size league robot soccer. The performance is illustrated in the context of the highly successful robot soccer team, the RoboRoos. The project is broken into three tasks; classification of behaviours, modelling and prediction of behaviours and integration of the predictions into the existing planning system. A probabilistic approach is taken to dealing with the uncertainty in the observations and with representing the uncertainty in the prediction of the behaviours. Results are shown for a classification system using a Naïve Bayesian Network that determines the opponent’s current behaviour. These results are compared to an expert designed fuzzy behaviour classification system. The paper illustrates how the modelling system will use the information from behaviour classification to produce probability distributions that model the manner with which the opponents perform their behaviours. These probability distributions are show to match well with the existing multi-agent planning system (MAPS) that forms the core of the RoboRoos system.
Resumo:
RatSLAM is a vision-based SLAM system based on extended models of the rodent hippocampus. RatSLAM creates environment representations that can be processed by the experience mapping algorithm to produce maps suitable for goal recall. The experience mapping algorithm also allows RatSLAM to map environments many times larger than could be achieved with a one to one correspondence between the map and environment, by reusing the RatSLAM maps to represent multiple sections of the environment. This paper describes experiments investigating the effects of the environment-representation size ratio and visual ambiguity on mapping and goal navigation performance. The experiments demonstrate that system performance is weakly dependent on either parameter in isolation, but strongly dependent on their joint values.
Resumo:
Obese children move less and with greater difficulty than normal-weight counterparts but expend comparable energy. Increased metabolic costs have been attributed to poor biomechanics but few studies have investigated the influence of obesity on mechanical demands of gait. This study sought to assess three-dimensional lower extremity joint powers in two walking cadences in 28 obese and normal-weight children. 3D-motion analysis was conducted for five trials of barefoot walking at self-selected and 30% greater than self-selected cadences. Mechanical power was calculated at the hip, knee, and ankle in sagittal, frontal and transverse planes. Significant group differences were seen for all power phases in the sagittal plane, hip and knee power at weight acceptance and hip power at propulsion in the frontal plane, and knee power during mid-stance in the transverse plane. After adjusting for body weight, group differences existed in hip and knee power phases at weight acceptance in sagittal and frontal planes, respectively. Differences in cadence existed for all hip joint powers in the sagittal plane and frontal plane hip power at propulsion. Frontal plane knee power at weight acceptance and sagittal plane knee power at propulsion were significantly different between cadences. Larger joint powers in obese children contribute to difficulty performing locomotor tasks, potentially decreasing motivation to exercise.
Resumo:
The main goal of this research is to design an efficient compression al~ gorithm for fingerprint images. The wavelet transform technique is the principal tool used to reduce interpixel redundancies and to obtain a parsimonious representation for these images. A specific fixed decomposition structure is designed to be used by the wavelet packet in order to save on the computation, transmission, and storage costs. This decomposition structure is based on analysis of information packing performance of several decompositions, two-dimensional power spectral density, effect of each frequency band on the reconstructed image, and the human visual sensitivities. This fixed structure is found to provide the "most" suitable representation for fingerprints, according to the chosen criteria. Different compression techniques are used for different subbands, based on their observed statistics. The decision is based on the effect of each subband on the reconstructed image according to the mean square criteria as well as the sensitivities in human vision. To design an efficient quantization algorithm, a precise model for distribution of the wavelet coefficients is developed. The model is based on the generalized Gaussian distribution. A least squares algorithm on a nonlinear function of the distribution model shape parameter is formulated to estimate the model parameters. A noise shaping bit allocation procedure is then used to assign the bit rate among subbands. To obtain high compression ratios, vector quantization is used. In this work, the lattice vector quantization (LVQ) is chosen because of its superior performance over other types of vector quantizers. The structure of a lattice quantizer is determined by its parameters known as truncation level and scaling factor. In lattice-based compression algorithms reported in the literature the lattice structure is commonly predetermined leading to a nonoptimized quantization approach. In this research, a new technique for determining the lattice parameters is proposed. In the lattice structure design, no assumption about the lattice parameters is made and no training and multi-quantizing is required. The design is based on minimizing the quantization distortion by adapting to the statistical characteristics of the source in each subimage. 11 Abstract Abstract Since LVQ is a multidimensional generalization of uniform quantizers, it produces minimum distortion for inputs with uniform distributions. In order to take advantage of the properties of LVQ and its fast implementation, while considering the i.i.d. nonuniform distribution of wavelet coefficients, the piecewise-uniform pyramid LVQ algorithm is proposed. The proposed algorithm quantizes almost all of source vectors without the need to project these on the lattice outermost shell, while it properly maintains a small codebook size. It also resolves the wedge region problem commonly encountered with sharply distributed random sources. These represent some of the drawbacks of the algorithm proposed by Barlaud [26). The proposed algorithm handles all types of lattices, not only the cubic lattices, as opposed to the algorithms developed by Fischer [29) and Jeong [42). Furthermore, no training and multiquantizing (to determine lattice parameters) is required, as opposed to Powell's algorithm [78). For coefficients with high-frequency content, the positive-negative mean algorithm is proposed to improve the resolution of reconstructed images. For coefficients with low-frequency content, a lossless predictive compression scheme is used to preserve the quality of reconstructed images. A method to reduce bit requirements of necessary side information is also introduced. Lossless entropy coding techniques are subsequently used to remove coding redundancy. The algorithms result in high quality reconstructed images with better compression ratios than other available algorithms. To evaluate the proposed algorithms their objective and subjective performance comparisons with other available techniques are presented. The quality of the reconstructed images is important for a reliable identification. Enhancement and feature extraction on the reconstructed images are also investigated in this research. A structural-based feature extraction algorithm is proposed in which the unique properties of fingerprint textures are used to enhance the images and improve the fidelity of their characteristic features. The ridges are extracted from enhanced grey-level foreground areas based on the local ridge dominant directions. The proposed ridge extraction algorithm, properly preserves the natural shape of grey-level ridges as well as precise locations of the features, as opposed to the ridge extraction algorithm in [81). Furthermore, it is fast and operates only on foreground regions, as opposed to the adaptive floating average thresholding process in [68). Spurious features are subsequently eliminated using the proposed post-processing scheme.