97 resultados para Simulación modular
Resumo:
This workshop comprised a diverse group of African construction experts, ranging far wider than RSA. Each of the attendees had attended the annual ASOCSA conference and was additionally provided with a short workshop pre-brief. The aim was to develop a view of their 15-20 year vision of construction improvement in RSA and the steps necessary to get there. These included sociological, structural, technical and process changes. Whilst some suggestions are significantly challenging, none are impossible, given sufficient collaboration between government, industry, academia and NGOs. The highest priority projects (more properly, programmes) were identified and further explored. These are: 1. Information Hub (‘Open Africa’). Aim – to utilise emerging trends in Open Data to provide a force for African unity. 2. Workforce Development. Aim – to rebuild a competent, skilled construction industry for RSA projects and for export. 3. Modular DIY Building. Aim – to accelerate the development of sustainable, cost-efficient and desirable housing for African economic immigrants and others living in makeshift and slum dwellings. Open Data is a maturing theme in different cities and governments around the world and the workshop attendees were very keen to seize such a possibility to assist in developing an environment where Africans can share information and foster collaboration. It is likely that NGOs might be keen to follow up such an initiative. There are significant developments taking place around the world in the construction sector currently, with comparatively large savings being made for taxpayers (20% plus in the UK). Not all of these changes would be easy to transplant to RSA (even more so to much of the rest of Africa). Workforce development was a keen plea amongst the attendees, who seemed concerned that expertise has leaked away and is not being replaced with sufficient intensity. It is possible today to develop modular buildings in such a way that even unskilled residents can assist in their construction, and even their appropriate design. These buildings can be sited nearly autonomously from infrastructures, thus relieving the tensions on cities and townships, whilst providing humane accommodation for the economically disadvantaged. Development of suitable solutions could either be conducted with other similarly stressed countries or developed in-country and the expertise exported. Finally, it should be pointed out that this was very much a first step. Any opportunity to collaborate from an Australian, QUT or CIB perspective would be welcomed, whilst acknowledging that the leading roles belong to RSA, CSIR, NRF, ASOCSA and the University of KwaZulu-Natal.
Resumo:
This thesis presents a novel approach to building large-scale agent-based models of networked physical systems using a compositional approach to provide extensibility and flexibility in building the models and simulations. A software framework (MODAM - MODular Agent-based Model) was implemented for this purpose, and validated through simulations. These simulations allow assessment of the impact of technological change on the electricity distribution network looking at the trajectories of electricity consumption at key locations over many years.
Resumo:
We explore how a standardization effort (i.e., when a firm pursues standards to further innovation) involves different search processes for knowledge and innovation outcomes. Using an inductive case study of Vanke, a leading Chinese property developer, we show how varying degrees of knowledge complexity and codification combine to produce a typology of four types of search process: active, integrative, decentralized and passive, resulting in four types of innovation outcome: modular, radical, incremental and architectural. We argue that when the standardization effort in a firm involves highly codified knowledge, incremental and architectural innovation outcomes are fostered, while modular and radical innovations are hindered. We discuss how standardization efforts can result in a second-order innovation capability, and conclude by calling for comparative research in other settings to understand how standardization efforts can be suited to different types of search process in different industry contexts.
Resumo:
There are some scenarios in which Unmmaned Aerial Vehicle (UAV) navigation becomes a challenge due to the occlusion of GPS systems signal, the presence of obstacles and constraints in the space in which a UAV operates. An additional challenge is presented when a target whose location is unknown must be found within a confined space. In this paper we present a UAV navigation and target finding mission, modelled as a Partially Observable Markov Decision Process (POMDP) using a state-of-the-art online solver in a real scenario using a low cost commercial multi rotor UAV and a modular system architecture running under the Robotic Operative System (ROS). Using POMDP has several advantages to conventional approaches as they take into account uncertainties in sensor information. We present a framework for testing the mission with simulation tests and real flight tests in which we model the system dynamics and motion and perception uncertainties. The system uses a quad-copter aircraft with an board downwards looking camera without the need of GPS systems while avoiding obstacles within a confined area. Results indicate that the system has 100% success rate in simulation and 80% rate during flight test for finding targets located at different locations.
Resumo:
Aiming to identify novel genetic variants and to confirm previously identified genetic variants associated with bone mineral density (BMD), we conducted a three-stage genome-wide association (GWA) meta-analysis in 27 061 study subjects. Stage 1 meta-analyzed seven GWA samples and 11 140 subjects for BMDs at the lumbar spine, hip and femoral neck, followed by a Stage 2 in silico replication of 33 SNPs in 9258 subjects, and by a Stage 3 de novo validation of three SNPs in 6663 subjects. Combining evidence from all the stages, we have identified two novel loci that have not been reported previously at the genome-wide significance (GWS; 5.0 × 10-8) level: 14q24.2 (rs227425, P-value 3.98 × 10-13, SMOC1) in the combined sample of males and females and 21q22.13 (rs170183, P-value 4.15 × 10-9, CLDN14) in the female-specific sample. The two newly identified SNPs were also significant in the GEnetic Factors for OSteoporosis consortium (GEFOS, n 5 32 960) summary results. We have also independently confirmed 13 previously reported loci at the GWS level: 1p36.12 (ZBTB40), 1p31.3 (GPR177), 4p16.3 (FGFRL1), 4q22.1 (MEPE), 5q14.3 (MEF2C), 6q25.1 (C6orf97, ESR1), 7q21.3 (FLJ42280, SHFM1), 7q31.31 (FAM3C, WNT16), 8q24.12 (TNFRSF11B), 11p15.3 (SOX6), 11q13.4 (LRP5), 13q14.11 (AKAP11) and 16q24 (FOXL1). Gene expression analysis in osteogenic cells implied potential functional association of the two candidate genes (SMOC1 and CLDN14) in bone metabolism. Our findings independently confirm previously identified biological pathways underlying bone metabolism and contribute to the discovery of novel pathways, thus providing valuable insights into the intervention and treatment of osteoporosis. © The Author 2013. Published by Oxford University Press.
Resumo:
The InstaBooth is a portable demountable interactive installation for situated community engagement. Its aim is to give a voice to communities who can share their thoughts and ideas in an unstructured and playful way that combines digital technology with tangible materials. It is constructed from standard CNC-cut plywood stock and plans for its construction are available for others to download and use. Its modular design accommodates a range of bespoke interactive technologies, both analogue and digital, designed to facilitate the engagement process by providing means to present different materials and offer different ways to collect feedback. The appearance and interactions of the booth are designed to appeal to different demographics and foster an interactive discussion about a range of different topics such as change management, policy development, and urban planning.
Resumo:
The brain's functional network exhibits many features facilitating functional specialization, integration, and robustness to attack. Using graph theory to characterize brain networks, studies demonstrate their small-world, modular, and "rich-club" properties, with deviations reported in many common neuropathological conditions. Here we estimate the heritability of five widely used graph theoretical metrics (mean clustering coefficient (γ), modularity (Q), rich-club coefficient (ϕnorm), global efficiency (λ), small-worldness (σ)) over a range of connection densities (k=5-25%) in a large cohort of twins (N=592, 84 MZ and 89 DZ twin pairs, 246 single twins, age 23±2.5). We also considered the effects of global signal regression (GSR). We found that the graph metrics were moderately influenced by genetic factors h2 (γ=47-59%, Q=38-59%, ϕnorm=0-29%, λ=52-64%, σ=51-59%) at lower connection densities (≤15%), and when global signal regression was implemented, heritability estimates decreased substantially h2 (γ=0-26%, Q=0-28%, ϕnorm=0%, λ=23-30%, σ=0-27%). Distinct network features were phenotypically correlated (|r|=0.15-0.81), and γ, Q, and λ were found to be influenced by overlapping genetic factors. Our findings suggest that these metrics may be potential endophenotypes for psychiatric disease and suitable for genetic association studies, but that genetic effects must be interpreted with respect to methodological choices.