97 resultados para Shishkin mesh


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We developed an anatomical mapping technique to detect hippocampal and ventricular changes in Alzheimer disease (AD). The resulting maps are sensitive to longitudinal changes in brain structure as the disease progresses. An anatomical surface modeling approach was combined with surface-based statistics to visualize the region and rate of atrophy in serial MRI scans and isolate where these changes link with cognitive decline. Fifty-two high-resolution MRI scans were acquired from 12 AD patients (age: 68.4 ± 1.9 years) and 14 matched controls (age: 71.4 ± 0.9 years), each scanned twice (2.1 ± 0.4 years apart). 3D parametric mesh models of the hippocampus and temporal horns were created in sequential scans and averaged across subjects to identify systematic patterns of atrophy. As an index of radial atrophy, 3D distance fields were generated relating each anatomical surface point to a medial curve threading down the medial axis of each structure. Hippocampal atrophic rates and ventricular expansion were assessed statistically using surface-based permutation testing and were faster in AD than in controls. Using color-coded maps and video sequences, these changes were visualized as they progressed anatomically over time. Additional maps localized regions where atrophic changes linked with cognitive decline. Temporal horn expansion maps were more sensitive to AD progression than maps of hippocampal atrophy, but both maps correlated with clinical deterioration. These quantitative, dynamic visualizations of hippocampal atrophy and ventricular expansion rates in aging and AD may provide a promising measure to track AD progression in drug trials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electrospun nanofiber meshes have emerged as a new generation of scaffold membranes possessing a number of features suitable for tissue regeneration. One of these features is the flexibility to modify their structure and composition to orchestrate specific cellular responses. In this study, we investigated the effects of nanofiber orientation and surface functionalization on human mesenchymal stem cell (hMSC) migration and osteogenic differentiation. We used an in vitro model to examine hMSC migration into a cell-free zone on nanofiber meshes and mitomycin C treatment to assess the contribution of proliferation to the observed migration. Poly (ɛ-caprolactone) meshes with oriented topography were created by electrospinning aligned nanofibers on a rotating mandrel, while randomly oriented controls were collected on a stationary collector. Both aligned and random meshes were coated with a triple-helical, type I collagen-mimetic peptide, containing the glycine-phenylalanine-hydroxyproline-glycine-glutamate-arginine (GFOGER) motif. Our results indicate that nanofiber GFOGER peptide functionalization and orientation modulate cellular behavior, individually, and in combination. GFOGER significantly enhanced the migration, proliferation, and osteogenic differentiation of hMSCs on nanofiber meshes. Aligned nanofiber meshes displayed increased cell migration along the direction of fiber orientation compared to random meshes; however, fiber alignment did not influence osteogenic differentiation. Compared to each other, GFOGER coating resulted in a higher proliferation-driven cell migration, whereas fiber orientation appeared to generate a larger direct migratory effect. This study demonstrates that peptide surface modification and topographical cues associated with fiber alignment can be used to direct cellular behavior on nanofiber mesh scaffolds, which may be exploited for tissue regeneration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new method for fabricating hydrogels with intricate control over hierarchical 3D porosity using micro-fiber porogens is presented. Melt electrospinning writing of poly(ε-caprolactone) is used to create the sacrificial template leading to hierarchical structuring consisting of pores inside the denser poly(2-oxazoline) hydrogel mesh. This versatile approach provides new opportunities to create well-defined multilevel control over interconnected pores with diameters in the lower micrometer range inside hydrogels with potential applications as cell scaffolds with tunable diffusion and transport of, e.g. nutrients, growth factors or therapeutics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a novel three-dimensional hybrid smoothed finite element method (H-SFEM) for solid mechanics problems. In 3D H-SFEM, the strain field is assumed to be the weighted average between compatible strains from the finite element method (FEM) and smoothed strains from the node-based smoothed FEM with a parameter α equipped into H-SFEM. By adjusting α, the upper and lower bound solutions in the strain energy norm and eigenfrequencies can always be obtained. The optimized α value in 3D H-SFEM using a tetrahedron mesh possesses a close-to-exact stiffness of the continuous system, and produces ultra-accurate solutions in terms of displacement, strain energy and eigenfrequencies in the linear and nonlinear problems. The novel domain-based selective scheme is proposed leading to a combined selective H-SFEM model that is immune from volumetric locking and hence works well for nearly incompressible materials. The proposed 3D H-SFEM is an innovative and unique numerical method with its distinct features, which has great potential in the successful application for solid mechanics problems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reducing unwanted trawl bycatch is actively encouraged in Australia, particularly in prawn trawl fisheries. We tested the performance of a Bycatch Reduction Device, the Yarrow Fisheye, during two periods of commercial fishing operations in Australia's Northern Prawn Fishery, by comparing the catches of paired treatment and control nets. We compared the catch weights of the small fish and invertebrate bycatch, and the commercially important tiger prawns, from 42 trawls in 2002. The Yarrow Fisheye reduced the weight of small bycatch by a mean of 22.7%, with no loss of tiger prawn. We also compared the numbers of seasnakes caught in 41 and 72 trawls during the spring trawling seasons of 2004 and 2005, respectively. The Yarrow Fisheye reduced the catches by a mean of 43.3%. Flume-tank tests of the Yarrow Fisheye showed that this device created a slow water-flow region extending over 2 m downstream from its position in the net, and close to where the catch accumulates. Finfish and seasnakes may be exploiting this slow water-flow region to escape via the eye, Although the reductions in fish and seasnake bycatch were excellent, we think they could be further improved by relating differences in fisheye position and localised water displacements, to design and rigging changes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The biomass and species composition of tropical phytoplankton in Albatross Bay, Gulf of Carpentaria, northern Australia, were examined monthly for 6 yr (1986 to 1992). Chlorophyll a (chl a) concentrations were highest (2 to 5.7 mu g l(-1)) in the wet season at inshore sites, usually coinciding with low salinities (30 to 33 ppt) and high temperatures (29 to 32 degrees C). At the offshore sites chi a concentrations were lower (0.2 to 2 mu g l(-1)) and did not vary seasonally. Nitrate and phosphate concentrations were generally low (0 to 3.68 mu M and 0.09 to 3 mu M for nitrate and phosphate respectively), whereas silicate was present in concentrations in the range 0.19 to 13 mu M. The phytoplankton community was dominated by diatoms, particularly at the inshore sites, as determined by a combination of microscopic and high-performance liquid chromatography (HPLC) pigment analyses. At the offshore sites the proportion of green flagellates increased. The cyanobacterium genus Trichodesmium and the diatom genera Chaetoceros, Rhizosolenia, Bacteriastrum and Thalassionema dominated the phytoplankton caught in 37 mu m mesh nets; however, in contrast to many other coastal areas studied worldwide there was no distinct species succession of the diatoms and only Trichodesmium showed seasonal changes in abundance. This reflects a stable phytoplankton community in waters without pulses of physical and chemical disturbances. These results are discussed in the context of the commercial prawn fishery in the Gulf of Carpentaria and the possible effect of phytoplankton on prawn larval growth and survival.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Diabetic foot ulcers (DFU) are a leading cause of diabetes-related hospitalisation and can be costly to manage without access to appropriate expert care. Within Queensland and indeed across many parts of Australia, there is an inequality in accessing specialist services for individuals with DFU. Recent National Health and Medical Research Council (NHMRC) diabetic foot guidelines recommend remote expert consultation with digital imaging should be made available to people with DFU to improve their clinical outcomes. Telemedicine appears to show promise in improving access to diabetic foot specialist services; however diabetic foot telemedicine models to date have relied upon videoconferencing, store and forward technology and/or customised appliances to obtain digital imagery which all require either expensive infrastructure or a timed reply to the request for advice. Whilst mobile phone advice services have been used with success in general diabetes management and telehealth services have improved diabetic foot outcomes, the rapid emergence in the use of mobile phones has established a need to review the role that various forms of telemedicine play in the management of DFU. The aim of this paper is to review traditional telemedicine modalities that have been used in the management of DFU and to compare that to new and innovative technology that are emerging. Process Studies investigating the management of DFU using various forms of telemedicine interventions will be included in this review. They include the use of videoconferencing technology, hand held digital still photography purpose built imaging devices and mobile phone imagery. Electronic databases (Pubmed, Medline and CINAHL) will be searched using broad MeSH terms and keywords that cover the intended area of interest. Findings It is anticipated that the results of this narrative review will provide delegates of the 2015 Australasian Podiatry Conference an insight into the types of emerging innovative diagnostic telemedicine technologies in the management of DFU against the backdrop of traditional and evidence based modalities. It is anticipated that the findings will drive further research in the area of mobile phone imagery and innovation in the management of DFU.