303 resultados para Shaker architecture--Pictorial works.
Resumo:
This chapter addresses the question, how can the common law concept of charity law be modernised? There are difficulties with the present jurisprudential conception. The focus of the chapter is not on those difficulties, however, but rather on the development of an alternative architecture for common law jurisprudence. The conclusion to which the chapter comes is that charity law can be modernised by a series of steps to include all civil society organisations. It is possible if the ‘technical’ definition of charitable purpose is abandoned in favour of a contemporary, not technical concept of charitiable purpose. This conclusion is reached by proposing a framework, developed from the common law concept of charities, that reconciles into a cohesive jurisprudential architecture all of the laws applying to civil society organisations, not just charities. In this section, first the argument is contextualised in an idea of society and located in a gap in legal theory. An analogy is then offered to introduce the problems in the legal theory applying, not just to charities, but more broadly to civil society organisations. The substantive challenge of mapping an alternative jurisprudence is then taken in steps. The final substantive section conceptualises the changes inherent in a move beyond charities to a jurisprudence centred on civil society organisations and how this would bring legal theory into line with sectoral analysis in other disciplines.
Resumo:
The culture of mashups which is examined by the contributions collected in this volume is a symptom of a wider paradigm shift in our engagement with information – a term which should be understood here in its broadest sense, ranging from factual material to creative works. It is a shift which has been a long time coming and has had many precedents, from the collage art of the Dadaists in the 1920s to the music mixtapes of the 70s and 80s, and finally to the explosion of mashup‐style practices that was enabled by modern computing technologies.
Resumo:
This paper argues a model of adaptive design for sustainable architecture within a framework of entropy evolution. The spectrum of sustainable architecture consists of efficient use of energy and material resource in the life-cycle of buildings, active involvement of the occupants into micro-climate control within the building, and the natural environment as the physical context. The interactions amongst all the parameters compose a complex system of sustainable architecture design, of which the conventional linear and fragmented design technologies are insufficient to indicate holistic and ongoing environmental performance. The latest interpretation of the Second Law of Thermodynamics states a microscopic formulation of an entropy evolution of complex open systems. It provides a design framework for an adaptive system evolves for the optimization in open systems, this adaptive system evolves for the optimization of building environmental performance. The paper concludes that adaptive modelling in entropy evolution is a design alternative for sustainable architecture.
Resumo:
This paper argues a model of open system design for sustainable architecture, based on a thermodynamics framework of entropy as an evolutionary paradigm. The framework can be simplified to stating that an open system evolves in a non-linear pattern from a far-from-equilibrium state towards a non-equilibrium state of entropy balance, which is a highly ordered organization of the system when order comes out of chaos. This paper is work in progress on a PhD research project which aims to propose building information modelling for optimization and adaptation of buildings environmental performance as an alternative sustainable design program in architecture. It will be used for efficient distribution and consumption of energy and material resource in life-cycle buildings, with the active involvement of the end-users and the physical constraints of the natural environment.
Resumo:
"This column is distinguished from previous Impact columns in that it concerns the development tightrope between research and commercial take-up and the role of the LGPL in an open source workflow toolkit produced in a University environment. Many ubiquitous systems have followed this route, (Apache, BSD Unix, ...), and the lessons this Service Oriented Architecture produces cast yet more light on how software diffuses out to impact us all." Michiel van Genuchten and Les Hatton Workflow management systems support the design, execution and analysis of business processes. A workflow management system needs to guarantee that work is conducted at the right time, by the right person or software application, through the execution of a workflow process model. Traditionally, there has been a lack of broad support for a workflow modeling standard. Standardization efforts proposed by the Workflow Management Coalition in the late nineties suffered from limited support for routing constructs. In fact, as later demonstrated by the Workflow Patterns Initiative (www.workflowpatterns.com), a much wider range of constructs is required when modeling realistic workflows in practice. YAWL (Yet Another Workflow Language) is a workflow language that was developed to show that comprehensive support for the workflow patterns is achievable. Soon after its inception in 2002, a prototype system was built to demonstrate that it was possible to have a system support such a complex language. From that initial prototype, YAWL has grown into a fully-fledged, open source workflow management system and support environment
Resumo:
This paper argues a model of open systems evolution based on evolutionary thermodynamics and complex system science, as a design paradigm for sustainable architecture. The mechanism of open system evolution is specified in mathematical simulations and theoretical discourses. According to the mechanism, the authors propose an intelligent building model of sustainable design by a holistic information system of the end-users, the building and nature. This information system is used to control the consumption of energy and material resources in building system at microscopic scale, to adapt the environmental performance of the building system to the natural environment at macroscopic scale, for an evolutionary emergence of sustainable performance of buildings.
Resumo:
This paper reveals the interior landscapes of selected contemporary Australian films, such as The Caterpillar Wish and Bad Boy Bubby, to develop a number of thematic influences on the manner in which domestic and private lives are constructed through filmic imagination. The research uncovers the conditions that contribute to particular scenographic representations of the humble interiors that act as both backdrop and performer to subtle and often troubled narratives. Such readings are informed by the theoretical works of writer Gertrude Stein, among others, who explore the relationships between the scenographic third dimension and the fourth dimensional performance in the representation of narrative space. A further theoretical thread lies in Giuliana Bruno’s work on the tension between private and public filmic space, which is explored through the public outing of intensely private spaces generated through narratives framed by the specificities of found interiors. Beyond the interrogation of qualities of imagined filmic space is the condition whereby locations, once transformed by the event of movie making are consequently forever revised. These altered conditions subsequently reinvest the lives of those who return to the location with layered narratives of occupation. Situationally, the now reconverted interior performs as contributor to subsequent private inhabitation, even if only as imagined space. The possibility here is that the qualities of the original may be superimposed and recontextualised to invest post-produced interiors with the qualities of the other space as imagined. This reading of film space explores new theoretical design scenarios for imagined and everyday interior landscapes.
Resumo:
Pore architecture of scaffolds is known to play a critical role in tissue engineering as it provides the vital framework for the seeded cells to organize into a functioning tissue. In this report, we investigated the effects of different concentration on silk fibroin protein 3D scaffold pore microstructure. Four pore size ranges of silk fibroin scaffolds were made by freeze-dry technique, with the pore sizes ranging from 50 to 300 µm. The pore size of the scaffold decreases as the concentration increases. Human mesenchymal stem cells were in vitro cultured in these scaffolds. After BMP7 gene transferred, DNA assay, ALP assay, hematoxylin–eosin staining, alizarin red staining and reverse transcription-polymerase chain reaction were performed to analyze the effect of the pore size on cell growth, differentiation and the secretion of extracellular matrix (ECM). Cell morphology in these 3D scaffolds was investigated by confocal microscopy. This study indicates mesenchymal stem cells prefer the group of scaffolds with pore size between 100 and 300 µm for better proliferation and ECM production
Resumo:
New-generation biomaterials for bone regenerations should be highly bioactive, resorbable and mechanically strong. Mesoporous bioactive glass (MBG), as a novel bioactive material, has been used for the study of bone regeneration due to its excellent bioactivity, degradation and drug-delivery ability; however, how to construct a 3D MBG scaffold (including other bioactive inorganic scaffolds) for bone regeneration still maintains a significant challenge due to its/their inherit brittleness and low strength. In this brief communication, we reported a new facile method to prepare hierarchical and multifunctional MBG scaffolds with controllable pore architecture, excellent mechanical strength and mineralization ability for bone regeneration application by a modified 3D-printing technique using polyvinylalcohol (PVA), as a binder. The method provides a new way to solve the commonly existing issues for inorganic scaffold materials, for example, uncontrollable pore architecture, low strength, high brittleness and the requirement for the second sintering at high temperature. The obtained 3D-printing MBG scaffolds possess a high mechanical strength which is about 200 times for that of traditional polyurethane foam template-resulted MBG scaffolds. They have highly controllable pore architecture, excellent apatite-mineralization ability and sustained drug-delivery property. Our study indicates that the 3D-printed MBG scaffolds may be an excellent candidate for bone regeneration.
Resumo:
This paper describes the background and methodology developed and employed in undertaking research developing a Knowledge Management Strategy for a key construction focused government agency. This paper reviews this methodology and examines a likely Knowledge Management Strategy. Two central objectives structure this Case Study: 1. Identify categories of important information generated by the Building Division, Queensland Department of Public Works in its service delivery to internal and external stake-holders, and 2. Formulate an appropriate and targeted Knowledge Management Strategy to meet the needs of the Queensland Building Capital Works program. The structure of this paper includes: *Description of the Queensland construction industry setting *Review the relevant literature *Design an appropriate research methodology *Analyse results *Formulate conclusions, contributions and implications of the targeted strategy.
Resumo:
The ability to play freely in our cities is essential for sustainable wellbeing. When integrated successfully into our cities, Urban Play performs an important role; physically, socially and culturally contributing to the image of the city. While Urban Play is essential, it also finds itself in conflict with the city. Under modernist urban approaches play activities have become progressively segregated from the urban context through a tripartite of design, procurement and management practices. Despite these restrictions, emergent underground play forms overcome the isolation of play within urban space. One of these activities (parkour) is used as an evocative case study to reveal the hidden urban terrains of desire and fear as it re-interprets the fabric of the city, eliciting practice based discussions about procurement, design and management practice along its route.
Resumo:
The interoperable and loosely-coupled web services architecture, while beneficial, can be resource-intensive, and is thus susceptible to denial of service (DoS) attacks in which an attacker can use a relatively insignificant amount of resources to exhaust the computational resources of a web service. We investigate the effectiveness of defending web services from DoS attacks using client puzzles, a cryptographic countermeasure which provides a form of gradual authentication by requiring the client to solve some computationally difficult problems before access is granted. In particular, we describe a mechanism for integrating a hash-based puzzle into existing web services frameworks and analyze the effectiveness of the countermeasure using a variety of scenarios on a network testbed. Client puzzles are an effective defence against flooding attacks. They can also mitigate certain types of semantic-based attacks, although they may not be the optimal solution.
Resumo:
In fault detection and diagnostics, limitations coming from the sensor network architecture are one of the main challenges in evaluating a system’s health status. Usually the design of the sensor network architecture is not solely based on diagnostic purposes, other factors like controls, financial constraints, and practical limitations are also involved. As a result, it quite common to have one sensor (or one set of sensors) monitoring the behaviour of two or more components. This can significantly extend the complexity of diagnostic problems. In this paper a systematic approach is presented to deal with such complexities. It is shown how the problem can be formulated as a Bayesian network based diagnostic mechanism with latent variables. The developed approach is also applied to the problem of fault diagnosis in HVAC systems, an application area with considerable modeling and measurement constraints.