111 resultados para Sewage disposal plants -- Computer simulation
Resumo:
This paper presents the blast response, damage mechanism and evaluation of residual load capacity of a concrete–steel composite (CSC) column using dynamic computer simulation techniques. This study is an integral part of a comprehensive research program which investigated the vulnerability of structural framing systems to catastrophic and progressive collapse under blast loading and is intended to provide design information on blast mitigation and safety evaluation of load bearing vulnerable columns that are key elements in a building. The performance of the CSC column is compared with that of a reinforced concrete (RC) column with the same dimensions and steel ratio. Results demonstrate the superior performance of the CSC column, compared to the RC column in terms of residual load carrying capacity, and its potential for use as a key element in structural systems. The procedure and results presented herein can be used in the design and safety evaluation of key elements of multi-storey buildings for mitigating the impact of blast loads.
Resumo:
This research has developed an innovative road safety barrier system that will enhance roadside safety. In doing so, the research developed new knowledge in the field of road crash mitigation for high speed vehicle impact involving plastic road safety barriers. This road safety barrier system has the required feature to redirecting an errant vehicle with limited lateral displacement. Research was carried out using dynamic computer simulation technique support by experimental testing. Future road safety barrier designers may use the information in this research as a design guideline to improve the performance and redirectional capability of the road safety barrier system. This will lead to better safety conditions on the roadways and potentially save lives.
Resumo:
Driving is often nominated as problematic by individuals with chronic whiplash associated disorders (WAD), yet driving-related performance has not been evaluated objectively. The purpose of this study was to test driving-related performance in persons with chronic WAD against healthy controls of similar age, gender and driving experience to determine if driving-related performance in the WAD group was sufficiently impaired to recommend fitness to drive assessment. Driving-related performance was assessed using an advanced driving simulator during three driving scenarios; freeway, residential and a central business district (CBD). Total driving duration was approximately 15 min. Five driving tasks which could cause a collision (critical events) were included in the scenarios. In addition, the effect of divided attention (identify red dots projected onto side or rear view mirrors) was assessed three times in each scenario. Driving performance was measured using the simulator performance index (SPI) which is calculated from 12 measures. z-Scores for all SPI measures were calculated for each WAD subject based on mean values of the control subjects. The z-scores were then averaged for the WAD group. A z-score of ≤−2 indicated a driving failing grade in the simulator. The number of collisions over the five critical events was compared between the WAD and control groups as was reaction time and missed response ratio in identifying the red dots. Seventeen WAD and 26 control subjects commenced the driving assessment. Demographic data were comparable between the groups. All subjects completed the freeway scenario but four withdrew during the residential and eight during the CBD scenario because of motion sickness. All scenarios were completed by 14 WAD and 17 control subjects. Mean z-scores for the SPI over the three scenarios was statistically lower in the WAD group (−0.3 ± 0.3; P < 0.05) but the score was not below the cut-off point for safe driving. There were no differences in the reaction time and missed response ratio in divided attention tasks between the groups (All P > 0.05). Assessment of driving in an advanced driving simulator for approximately 15 min revealed that driving-related performance in chronic WAD was not sufficiently impaired to recommend the need for fitness to drive assessment.
Resumo:
Semiconductor III-V quantum dots (QDs) are particularly enticing components for the integration of optically promising III-V materials with the silicon technology prevalent in the microelectronics industry. However, defects due to deviations from a stoichiometric composition [group III: group V = 1] may lead to impaired device performance. This paper investigates the initial stages of formation of InSb and GaAs QDs on Si(1 0 0) through hybrid numerical simulations. Three situations are considered: a neutral gas environment (NG), and two ionized gas environments, namely a localized ion source (LIS) and a background plasma (BP) case. It is shown that when the growth is conducted in an ionized gas environment, a stoichiometric composition may be obtained earlier in the QD as compared to a NG. Moreover, the stoichiometrization time, tst, is shorter for the BP case compared to the LIS scenario. A discussion of the effect of ion/plasma-based tools as well as a range of process conditions on the final island size distribution is also included. Our results suggest a way to obtain a deterministic level of control over nanostructure properties (in particular, elemental composition and size) during the initial stages of growth which is a crucial step towards achieving highly tailored QDs suitable for implementation in advanced technological devices.
Resumo:
The usual practice to study a large power system is through digital computer simulation. However, the impact of large scale use of small distributed generators on a power network cannot be evaluated strictly by simulation since many of these components cannot be accurately modelled. Moreover, the network complexity makes the task of practical testing on a physical network nearly impossible. This study discusses the paradigm of interfacing a real-time simulation of a power system to real-life hardware devices. This type of splitting a network into two parts and running a real-time simulation with a physical system in parallel is usually termed as power-hardware-in-the-loop (PHIL) simulation. The hardware part is driven by a voltage source converter that amplifies the signals of the simulator. In this paper, the effects of suitable control strategy on the performance of PHIL and the associated stability aspects are analysed in detail. The analyses are validated through several experimental tests using an real-time digital simulator.
Resumo:
A series of conjugated copolymers containing fluorene or indenofluorene units alternating with oligothiophene segments, with potential interest for use as the active layer in field-effect transistors, is investigated. Atomic force microscopy analysis of the morphology of thin deposits shows either the formation of fibrillar structures, which are the signature of long-range π stacking, or the presence of untextured aggregates, resulting from disordered assembly. These morphologies are interpreted in terms of the supramolecular organization of the conjugated chains. Molecular modeling simulations indicate that the commensurability between the lengths of the monomer units and the presence of alkyl side groups are the two key structural factors governing the chain organization into highly ordered assemblies. The most favorable structures are those combining fluorene (indenofluorene) units with unsubstituted bithiophene (terthiophene) segments.
Resumo:
This research treated the response of underground transportation tunnels to surface blast loads using advanced computer simulation techniques. The influences of important parameters, such as tunnel material, geometrical configuration of segments and surrounding soil were investigated. The findings of this research offer significant new information on the blast performance of underground tunnels and will contribute towards future civil engineering applications.
Resumo:
Meta-analysis is a method to obtain a weighted average of results from various studies. In addition to pooling effect sizes, meta-analysis can also be used to estimate disease frequencies, such as incidence and prevalence. In this article we present methods for the meta-analysis of prevalence. We discuss the logit and double arcsine transformations to stabilise the variance. We note the special situation of multiple category prevalence, and propose solutions to the problems that arise. We describe the implementation of these methods in the MetaXL software, and present a simulation study and the example of multiple sclerosis from the Global Burden of Disease 2010 project. We conclude that the double arcsine transformation is preferred over the logit, and that the MetaXL implementation of multiple category prevalence is an improvement in the methodology of the meta-analysis of prevalence.
Resumo:
The hippocampus is an anatomically distinct region of the medial temporal lobe that plays a critical role in the formation of declarative memories. Here we show that a computer simulation of simple compartmental cells organized with basic hippocampal connectivity is capable of producing stimulus intensity sensitive wide-band fluctuations of spectral power similar to that seen in real EEG. While previous computational models have been designed to assess the viability of the putative mechanisms of memory storage and retrieval, they have generally been too abstract to allow comparison with empirical data. Furthermore, while the anatomical connectivity and organization of the hippocampus is well defined, many questions regarding the mechanisms that mediate large-scale synaptic integration remain unanswered. For this reason we focus less on the specifics of changing synaptic weights and more on the population dynamics. Spectral power in four distinct frequency bands were derived from simulated field potentials of the computational model and found to depend on the intensity of a random input. The majority of power occurred in the lowest frequency band (3-6 Hz) and was greatest to the lowest intensity stimulus condition (1% maximal stimulus). In contrast, higher frequency bands ranging from 7-45 Hz show an increase in power directly related with an increase in stimulus intensity. This trend continues up to a stimulus level of 15% to 20% of the maximal input, above which power falls dramatically. These results suggest that the relative power of intrinsic network oscillations are dependent upon the level of activation and that above threshold levels all frequencies are damped, perhaps due to over activation of inhibitory interneurons.
Resumo:
Oscillations of neural activity may bind widespread cortical areas into a neural representation that encodes disparate aspects of an event. In order to test this theory we have turned to data collected from complex partial epilepsy (CPE) patients with chronically implanted depth electrodes. Data from regions critical to word and face information processing was analyzed using spectral coherence measurements. Similar analyses of intracranial EEG (iEEG) during seizure episodes display HippoCampal Formation (HCF)—NeoCortical (NC) spectral coherence patterns that are characteristic of specific seizure stages (Klopp et al. 1996). We are now building a computational memory model to examine whether spatio-temporal patterns of human iEEG spectral coherence emerge in a computer simulation of HCF cellular distribution, membrane physiology and synaptic connectivity. Once the model is reasonably scaled it will be used as a tool to explore neural parameters that are critical to memory formation and epileptogenesis.
Resumo:
One of the problems to be solved in attaining the full potentials of hematopoietic stem cell (HSC) applications is the limited availability of the cells. Growing HSCs in a bioreactor offers an alternative solution to this problem. Besides, it also offers the advantages of eliminating labour intensive process as well as the possible contamination involved in the periodic nutrient replenishments in the traditional T-flask stem cell cultivation. In spite of this, the optimization of HSC cultivation in a bioreactor has been barely explored. This manuscript discusses the development of a mathematical model to describe the dynamics in nutrient distribution and cell concentration of an ex vivo HSC cultivation in a microchannel perfusion bioreactor. The model was further used to optimize the cultivation by proposing three alternative feeding strategies in order to prevent the occurrence of nutrient limitation in the bioreactor. The evaluation of these strategies, the periodic step change increase in the inlet oxygen concentration, the periodic step change increase in the media inflow, and the feedback control of media inflow, shows that these strategies can successfully improve the cell yield of the bioreactor. In general, the developed model is useful for the design and optimization of bioreactor operation.
Resumo:
Animals are often used as symbols in policy debates and media accounts of marine pollution. Images of miserable oil-soaked marine birds and mammals are prominent following high profile oil spills such as the Exxon Valdez, Prestige and Pacific Adventurer incidents. Portrayed as hapless victims, these animal actors are not only cast as powerful symbols of the effects of anthropogenic pollution but also represent an environment in crisis. Animals, like the broader environment, are seen as something which is acted upon. Less attention has been given to the ways in which animals have been cast as either the cause of marine pollution or as having the potential to actively mitigate the potential impacts of anthropogenic marine pollution. This article explores how animals are constructed with respect to vessel-sourced sewage pollution. Through a process of interpretive policy analysis, drawing on media reports and responses to an Australian regulatory review process this study found that, when defending the perceived right to pollute recreational boaters implicated animals such as dogs, fish, turtles, dolphins and seabirds in their pollution discourses. Scapegoating was an important rhetorical feature of claims-making strategies designed to avoid responsibility for changing sewage disposal practices.
Resumo:
This work examined a new method of detecting small water filled cracks in underground insulation ('water trees') using data from commecially available non-destructive testing equipment. A testing facility was constructed and a computer simulation of the insulation designed in order to test the proposed ageing factor - the degree of non-linearity. This was a large industry-backed project involving an ARC linkage grant, Ergon Energy and the University of Queensland, as well as the Queensland University of Technology.
Resumo:
An important uncertainty when estimating per capita consumption of, for example, illicit drugs by means of wastewater analysis (sometimes referred to as “sewage epidemiology”) relates to the size and variability of the de facto population in the catchment of interest. In the absence of a day-specific direct population count any indirect surrogate model to estimate population size lacks a standard to assess associated uncertainties. Therefore, the objective of this study was to collect wastewater samples at a unique opportunity, that is, on a census day, as a basis for a model to estimate the number of people contributing to a given wastewater sample. Mass loads for a wide range of pharmaceuticals and personal care products were quantified in influents of ten sewage treatment plants (STP) serving populations ranging from approximately 3500 to 500 000 people. Separate linear models for population size were estimated with the mass loads of the different chemical as the explanatory variable: 14 chemicals showed good, linear relationships, with highest correlations for acesulfame and gabapentin. De facto population was then estimated through Bayesian inference, by updating the population size provided by STP staff (prior knowledge) with measured chemical mass loads. Cross validation showed that large populations can be estimated fairly accurately with a few chemical mass loads quantified from 24-h composite samples. In contrast, the prior knowledge for small population sizes cannot be improved substantially despite the information of multiple chemical mass loads. In the future, observations other than chemical mass loads may improve this deficit, since Bayesian inference allows including any kind of information relating to population size.
Resumo:
Analysing wastewater samples is an innovative approach that overcomes many limitations of traditional surveys to identify and measure a range of chemicals that were consumed by or exposed to people living in a sewer catchment area. First conceptualised in 2001, much progress has been made to make wastewater analysis (WWA) a reliable and robust tool for measuring chemical consumption and/or exposure. At the moment, the most popular application of WWA, sometimes referred as sewage epidemiology, is to monitor the consumption of illicit drugs in communities around the globe, including China. The approach has been largely adopted by law enforcement agencies as a device to monitor the temporal and geographical patterns of drug consumption. In the future, the methodology can be extended to other chemicals including biomarkers of population health (e.g. environmental or oxidative stress biomarkers, lifestyle indicators or medications that are taken by different demographic groups) and pollutants that people are exposed to (e.g. polycyclic aromatic hydrocarbons, perfluorinated chemicals, and toxic pesticides). The extension of WWA to a huge range of chemicals may give rise to a field called sewage chemical-information mining (SCIM) with unexplored potentials. China has many densely populated cities with thousands of sewage treatment plants which are favourable for applying WWA/SCIM in order to help relevant authorities gather information about illicit drug consumption and population health status. However, there are some prerequisites and uncertainties of the methodology that should be addressed for SCIM to reach its full potential in China.