164 resultados para Sensor relocation
Resumo:
This article proposes an approach for real-time monitoring of risks in executable business process models. The approach considers risks in all phases of the business process management lifecycle, from process design, where risks are defined on top of process models, through to process diagnosis, where risks are detected during process execution. The approach has been realized via a distributed, sensor-based architecture. At design-time, sensors are defined to specify risk conditions which when fulfilled, are a likely indicator of negative process states (faults) to eventuate. Both historical and current process execution data can be used to compose such conditions. At run-time, each sensor independently notifies a sensor manager when a risk is detected. In turn, the sensor manager interacts with the monitoring component of a business process management system to prompt the results to process administrators who may take remedial actions. The proposed architecture has been implemented on top of the YAWL system, and evaluated through performance measurements and usability tests with students. The results show that risk conditions can be computed efficiently and that the approach is perceived as useful by the participants in the tests.
Resumo:
Advances in technology introduce new application areas for sensor networks. Foreseeable wide deployment of mission critical sensor networks creates concerns on security issues. Security of large scale densely deployed and infrastructure less wireless networks of resource limited sensor nodes requires efficient key distribution and management mechanisms. We consider distributed and hierarchical wireless sensor networks where unicast, multicast and broadcast type of communications can take place. We evaluate deterministic, probabilistic and hybrid type of key pre-distribution and dynamic key generation algorithms for distributing pair-wise, group-wise and network-wise keys.
Resumo:
Key distribution is one of the most challenging security issues in wireless sensor networks where sensor nodes are randomly scattered over a hostile territory. In such a sensor deployment scenario, there will be no prior knowledge of post deployment configuration. For security solutions requiring pair wise keys, it is impossible to decide how to distribute key pairs to sensor nodes before the deployment. Existing approaches to this problem are to assign more than one key, namely a key-chain, to each node. Key-chains are randomly drawn from a key-pool. Either two neighbouring nodes have a key in common in their key-chains, or there is a path, called key-path, among these two nodes where each pair of neighbouring nodes on this path has a key in common. Problem in such a solution is to decide on the key-chain size and key-pool size so that every pair of nodes can establish a session key directly or through a path with high probability. The size of the key-path is the key factor for the efficiency of the design. This paper presents novel, deterministic and hybrid approaches based on Combinatorial Design for key distribution. In particular, several block design techniques are considered for generating the key-chains and the key-pools. Comparison to probabilistic schemes shows that our combinatorial approach produces better connectivity with smaller key-chain sizes.
Resumo:
Secure communications in distributed Wireless Sensor Networks (WSN) operating under adversarial conditions necessitate efficient key management schemes. In the absence of a priori knowledge of post-deployment network configuration and due to limited resources at sensor nodes, key management schemes cannot be based on post-deployment computations. Instead, a list of keys, called a key-chain, is distributed to each sensor node before the deployment. For secure communication, either two nodes should have a key in common in their key-chains, or they should establish a key through a secure-path on which every link is secured with a key. We first provide a comparative survey of well known key management solutions for WSN. Probabilistic, deterministic and hybrid key management solutions are presented, and they are compared based on their security properties and re-source usage. We provide a taxonomy of solutions, and identify trade-offs in them to conclude that there is no one size-fits-all solution. Second, we design and analyze deterministic and hybrid techniques to distribute pair-wise keys to sensor nodes before the deployment. We present novel deterministic and hybrid approaches based on combinatorial design theory and graph theory for deciding how many and which keys to assign to each key-chain before the sensor network deployment. Performance and security of the proposed schemes are studied both analytically and computationally. Third, we address the key establishment problem in WSN which requires key agreement algorithms without authentication are executed over a secure-path. The length of the secure-path impacts the power consumption and the initialization delay for a WSN before it becomes operational. We formulate the key establishment problem as a constrained bi-objective optimization problem, break it into two sub-problems, and show that they are both NP-Hard and MAX-SNP-Hard. Having established inapproximability results, we focus on addressing the authentication problem that prevents key agreement algorithms to be used directly over a wireless link. We present a fully distributed algorithm where each pair of nodes can establish a key with authentication by using their neighbors as the witnesses.
Resumo:
An analytical method for the detection of carbonaceous gases by a non-dispersive infrared sensor (NDIR) has been developed. The calibration plots of six carbonaceous gases including CO2, CH4, CO, C2H2, C2H4 and C2H6 were obtained and the reproducibility determined to verify the feasibility of this gas monitoring method. The results prove that squared correlation coefficients for the six gas measurements are greater than 0.999. The reproducibility is excellent, thus indicating that this analytical method is useful to determinate the concentrations of carbonaceous gases.
Resumo:
The use of Wireless Sensor Networks (WSNs) for Structural Health Monitoring (SHM) has become a promising approach due to many advantages such as low cost, fast and flexible deployment. However, inherent technical issues such as data synchronization error and data loss have prevented these distinct systems from being extensively used. Recently, several SHM-oriented WSNs have been proposed and believed to be able to overcome a large number of technical uncertainties. Nevertheless, there is limited research verifying the applicability of those WSNs with respect to demanding SHM applications like modal analysis and damage identification. This paper first presents a brief review of the most inherent uncertainties of the SHM-oriented WSN platforms and then investigates their effects on outcomes and performance of the most robust Output-only Modal Analysis (OMA) techniques when employing merged data from multiple tests. The two OMA families selected for this investigation are Frequency Domain Decomposition (FDD) and Data-driven Stochastic Subspace Identification (SSI-data) due to the fact that they both have been widely applied in the past decade. Experimental accelerations collected by a wired sensory system on a large-scale laboratory bridge model are initially used as clean data before being contaminated by different data pollutants in sequential manner to simulate practical SHM-oriented WSN uncertainties. The results of this study show the robustness of FDD and the precautions needed for SSI-data family when dealing with SHM-WSN uncertainties. Finally, the use of the measurement channel projection for the time-domain OMA techniques and the preferred combination of the OMA techniques to cope with the SHM-WSN uncertainties is recommended.
Resumo:
One of the primary desired capabilities of any future air traffic separation management system is the ability to provide early conflict detection and resolution effectively and efficiently. In this paper, we consider the risk of conflict as a primary measurement to be used for early conflict detection. This paper focuses on developing a novel approach to assess the impact of different measurement uncertainty models on the estimated risk of conflict. The measurement uncertainty model can be used to represent different sensor accuracy and sensor choices. Our study demonstrates the value of modelling measurement uncertainty in the conflict risk estimation problem and presents techniques providing a means of assessing sensor requirements to achieve desired conflict detection performance.
Resumo:
The main objective of this paper is to describe the development of a remote sensing airborne air sampling system for Unmanned Aerial Systems (UAS) and provide the capability for the detection of particle and gas concentrations in real time over remote locations. The design of the air sampling methodology started by defining system architecture, and then by selecting and integrating each subsystem. A multifunctional air sampling instrument, with capability for simultaneous measurement of particle and gas concentrations was modified and integrated with ARCAA’s Flamingo UAS platform and communications protocols. As result of the integration process, a system capable of both real time geo-location monitoring and indexed-link sampling was obtained. Wind tunnel tests were conducted in order to evaluate the performance of the air sampling instrument in controlled nonstationary conditions at the typical operational velocities of the UAS platform. Once the remote fully operative air sampling system was obtained, the problem of mission design was analyzed through the simulation of different scenarios. Furthermore, flight tests of the complete air sampling system were then conducted to check the dynamic characteristics of the UAS with the air sampling system and to prove its capability to perform an air sampling mission following a specific flight path.
Resumo:
An investigation on hydrogen and methane sensing performance of hydrothermally formed niobium tungsten oxide nanorods employed in a Schottky diode structure is presented herein. By implementing tungsten into the surface of the niobium lattice, we create Nb5+ and W5+ oxide states and an abundant number of surface traps, which can collect and hold the adsorbate charge to reinforce a greater bending of the energy bands at the metal/oxide interface. We show experimentally, that extremely large voltage shifts can be achieved by these nanorods under exposure to gas at both room and high temperatures and attribute this to the strong accumulation of the dipolar charges at the interface via the surface traps. Thus, our results demonstrate that niobium tungsten oxide nanorods can be implemented for gas sensing applications, showing ultra-high sensitivities.
Resumo:
In this work, the structural and gas sensing properties of an electropolymerized, polyaniline (PANI)/multiwall carbon nanotube (MWNT) composite based surface acoustic wave (SAW) sensor are reported. Thin films made of PANI nanofibers were deposited onto 36 lithium tantalate (LiTaO3) SAW transducers using electropolymerization and were subsequently dedoped. Scanning electron microscopy (SEM) revealed the compact growth of the composites which is much denser than that of PANI nanofibers. The PANI/MWNT composite based SAW sensor was then exposed to different concentrations of hydrogen (H2) gas at room temperature with a demonstrated electrical response.
Resumo:
A nanostructured Schottky diode was fabricated to sense hydrogen and propene gases in the concentration range of 0.06% to 1%. The ZnO sensitive layer was deposited on SiC substrate by pulse laser deposition technique. Scanning electron microscopy and X-ray diffraction characterisations revealed presence of wurtzite structured ZnO nanograins grown in the direction of (002) and (004). The nanostructured diode was investigated at optimum operating temperature of 260 °C. At a constant reverse current of 1 mA, the voltage shifts towards 1% hydrogen and 1% propene were measured as 173.3 mV and 191.8 mV, respectively.
Resumo:
In this paper, we report the development of a novel Pt/MoO3 nano-flower/SiC Schottky diode based device for hydrogen gas sensing applications. The MoO3 nanostructured thin films were deposited on SiC substrates via thermal evaporation. Morphological characterization of the nanostructured MoO3 by scanning electron microscopy revealed randomly orientated thin nanoplatelets in a densely packed formation of nano-flowers with dimensions ranging from 250 nm to 1 μm. Current-voltage characteristics of the sensor were measured at temperatures from 25°C to 250°C. The sensor showed greater sensitivity in a reverse bias condition than in forward bias. Dynamic response of the sensor was investigated towards different concentrations of hydrogen gas in a synthetic air mixture at 250°C and a large voltage shift of 5.7 V was recorded upon exposure to 1% hydrogen.
Resumo:
A hydrogen gas sensor based on Pt/nanostructured ZnO Schottky diode has been developed. Our proposed theoretical model allows for the explanation of superior dynamic performance of the reverse biased diode when compared to the forward bias operation. The sensor was evaluated with low concentration H2 gas exposures over a temperature range of 280°C to 430°C. Upon exposure to H2 gas, the effective change in free carrier concentration at the Pt/structured ZnO interface is amplified by an enhancement factor, effectively lowering the reverse barrier, producing a large voltage shift. The lowering of the reverse barrier permits a faster response in reverse bias operation, than in forward bias operation.
Resumo:
In this paper, we present gas sensing properties of Pt/graphene-like nano-sheets towards hydrogen gas. The graphene-like nano-sheets were produced via the reduction of spray-coated graphite oxide deposited on SiC substrates by hydrazine vapor. Structural and morphological characterizations of the graphene sheets were analyzed by scanning electron and atomic force microscopy. Current-voltage and dynamic responses of the sensors were investigated towards different concentrations of hydrogen gas in a synthetic air mixture at 100°C. A voltage shift of 100 mV was recorded at 1 mA reverse bias current.
Resumo:
Presented is the material and gas sensing properties of graphene-like nano-sheets deposited on 36° YX lithium tantalate (LiTaO3) surface acoustic wave (SAW) transducers. The graphene-like nano-sheets were characterized via scanning electron microscopy (SEM), atomic force microscopy(AFM)and X-ray photoelectron spectroscopy (XPS). The graphenelike nano-sheet/SAW sensors were exposed to different concentrations of hydrogen (H2) gas in a synthetic air at room temperature. The developed sensors exhibit good sensitivity towards low concentrations of H2 in ambient conditions, as well as excellent dynamic performance towards H2 at room temperature.