756 resultados para School buildings
Resumo:
A high contrast ratio between windows and surrounding walls may lead to office workers visual discomfort that could negatively affect their satisfaction and productivity. Consequently, occupants may try to adapt their working environment by closing blinds and/ or turning on the lights to enhance indoor visual comfort, which can reduce predicted energy savings. The hypothesis of this study is that reducing luminance contrast ratio on the window wall will improve window appearance which potentially will reduce visual discomfort and decrease workers interventions. Thus, this PhD research proposes a simple strategy to diminish the luminance contrast on the window wall by increasing the luminance of the areas surrounding the windows using supplementary light emitting diode (LED) systems. To test the hypothesis, this investigation will involve three experiments in different office layouts with various window types and orientations in Brisbane, Australia. It will assess user preferences for different luminance patterns in windowed offices featuring flexible, lowpower LED lighting installations that allows multiple lighting design options on the window wall. Detailed luminance and illuminance measures will be used to match quantitative lighting design assessment to user preferences.
Resumo:
Balconies, as one of the main architectural features in subtropical climates, are assumed to enhance the ventilation performance of buildings by redirecting the wind. Although there are some studies on the effect of balconies on natural ventilation inside buildings, the majority have been conducted on single zone buildings with simple geometries. The purpose of this study is to explore the effect of balconies on the internal air flow pattern and ventilation performance of multi-storey residential buildings with internal partitions. To this end, a sample residential unit was selected for investigation and three different conditions tested, base case (no balcony), an open balcony and a semi-enclosed balcony. Computational Fluid Dynamics is used as an analysis method due to its accuracy and ability to provide detailed results. The cases are analysed in terms of average velocity, flow uniformity and number of Air Changes per Hour (ACH). The results suggest the introduction of a semi-enclosed balcony into high-rise dwellings improves the average velocity and flow uniformity. Integrating an open balcony results in reduction of the aforementioned parameters at 0° wind incidence.
Resumo:
The study explores the relationship between open space design, factors impacting open space provision, and resident satisfaction with open space in multistorey apartment buildings in the context of the subtropical lifestyle and climate of Brisbane Australia. The purpose of the paper is to identify the specific physical and spatial design characteristics residents perceive to be important in open spaces associated with their private dwellings and with shared open spaces. Firsthand resident evaluations of everyday experiences of residing in inner urban high density environments are explored through a survey of 636 residents and interviews with 24 residents. Private balconies are highly valued, but residents’ satisfaction would be enhanced by spaciousness for diverse activities, privacy and climate responsive design. Communal spaces and facilities are used infrequently by many residents who prefer interactions with community outside of the building. This is related to preferences for a level of anonymity in a setting where privacy is difficult to achieve due to physical proximity of neighbours.
Resumo:
This study investigated the cool roof technology effects on annual energy saving of a large one-storey commercial building in Queensland, Australia. A computer model of the case study was developed using commercial software by using the appropriate geometrical and thermal building specifications. Field study data were used to validate the model. The model was then used to extend the investigation to other cities in various Australian climate zones. The results of this research show that significant energy savings can be obtained using cool roof technology, particularly in warm, sunny climates, and the thesis can contribute to provide a guideline for application of cool roof technology to single-storey commercial building throughout Australia.
Resumo:
Rapid growth in the global population requires expansion of building stock, which in turn calls for increased energy demand. This demand varies in time and also between different buildings, yet, conventional methods are only able to provide mean energy levels per zone and are unable to capture this inhomogeneity, which is important to conserve energy. An additional challenge is that some of the attempts to conserve energy, through for example lowering of ventilation rates, have been shown to exacerbate another problem, which is unacceptable indoor air quality (IAQ). The rise of sensing technology over the past decade has shown potential to address both these issues simultaneously by providing high–resolution tempo–spatial data to systematically analyse the energy demand and its consumption as well as the impacts of measures taken to control energy consumption on IAQ. However, challenges remain in the development of affordable services for data analysis, deployment of large–scale real–time sensing network and responding through Building Energy Management Systems. This article presents the fundamental drivers behind the rise of sensing technology for the management of energy and IAQ in urban built environments, highlights major challenges for their large–scale deployment and identifies the research gaps that should be closed by future investigations.
Resumo:
An extravaganza of shapes now forms our city skylines. CAD and BIM with their inbuilt links to manufacturing and construction processes has made possible this kind of effusive architectural expression, at least externally. Building developers clearly understand the enormous marketing potential for impact expression. The skilled manipulation of 3D CAD software enables architects to achieve usable gross floor space within an enticingly sinuous, but build-able, envelope. This critical factor is resulting in a fundamental change to the appearance of our cities. It has become plausible, at least, to design and build complex and non-repetitive buildings without incurring prohibitive additional labor costs.However The ground level lobby spaces often do manage to retain some of the external. However, the interior working spaces, particularly in commercial office buildings tend to loose this grand gesture. However - the internal activity - the very reason for the existence of the building – often takes place in monotonous spaces that seem driven predominately by the need to accommodate workstation furniture and functions in dire need of reconsideration.
Resumo:
The information on climate variations is essential for the research of many subjects, such as the performance of buildings and agricultural production. However, recorded meteorological data are often incomplete. There may be a limited number of locations recorded, while the number of recorded climatic variables and the time intervals can also be inadequate. Therefore, the hourly data of key weather parameters as required by many building simulation programmes are typically not readily available. To overcome this gap in measured information, several empirical methods and weather data generators have been developed. They generally employ statistical analysis techniques to model the variations of individual climatic variables, while the possible interactions between different weather parameters are largely ignored. Based on a statistical analysis of 10 years historical hourly climatic data over all capital cities in Australia, this paper reports on the finding of strong correlations between several specific weather variables. It is found that there are strong linear correlations between the hourly variations of global solar irradiation (GSI) and dry bulb temperature (DBT), and between the hourly variations of DBT and relative humidity (RH). With an increase in GSI, DBT would generally increase, while the RH tends to decrease. However, no such a clear correlation can be found between the DBT and atmospheric pressure (P), and between the DBT and wind speed. These findings will be useful for the research and practice in building performance simulation.