223 resultados para Sample Preparation
Resumo:
Calcium Phosphate ceramics have been widely used in tissue engineering due to their excellent biocompatibility and biodegradability. In the physiological environment, they are able to gradually degrade, absorbed and promote bone growth. Ultimately, they are capable of replacing damaged bone with new tissue. However, their low mechanical properties limit calcium phosphate ceramics in load-bearing applications. To obtain sufficient mechanical properties as well as high biocompatibility is one of the main focuses in biomaterials research. Therefore, the current project focuses on the preparation and characterization of porous tri-calcium phosphate (TCP) ceramic scaffolds. Hydroxapatite (HA) was used as the raw material, and normal calcium phosphate bioglass was added to adjust the ratio between calcium and phosphate. It was found that when 20% bioglass was added to HA and sintered at 1400oC for 3 hours, the TCP scaffold was obtained and this was confirmed by X-ray diffraction (XRD) analysis. Test results have shown that by applying this method, TCP scaffolds have significantly higher compressive strength (9.98MPa) than those made via TCP powder (<3MPa). Moreover, in order to further increase the compressive strength of TCP scaffolds, the samples were then coated with bioglass. For normal bioglass coated TCP scaffold, compressive strength was 16.69±0.5MPa; the compressive strength for single layer mesoporous bioglass coated scaffolds was 15.03±0.63MPa. In addition, this project has also concentrated on sizes and shapes effects; it was found that the cylinder scaffolds have more mechanical property than the club ones. In addition, this project performed cell culture within scaffold to assess biocompatibility. The cells were well distributed in the scaffold, and the cytotoxicity test was performed by 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-di- phenytetrazoliumromide (MTT) assay. The Alkaline Phosphatase (Alp) activity of human bone marrow mesenchymal stem cell system (hBMSCs) seeded on scaffold expressed higher in vitro than that in the positive control groups in osteogenic medium, which indicated that the scaffolds were both osteoconductive and osteoinductive, showing potential value in bone tissue engineering.
Resumo:
Materials with one-dimensional (1D) nanostructure are important for catalysis. They are the preferred building blocks for catalytic nanoarchitecture, and can be used to fabricate designer catalysts. In this thesis, one such material, alumina nanofibre, was used as a precursor to prepare a range of nanocomposite catalysts. Utilising the specific properties of alumina nanofibres, a novel approach was developed to prepare macro-mesoporous nanocomposites, which consist of a stacked, fibrous nanocomposite with a core-shell structure. Two kinds of fibrous ZrO2/Al2O3 and TiO2/Al2O3 nanocomposites were successfully synthesised using boehmite nanofibers as a hard temperate and followed by a simple calcination. The alumina nanofibres provide the resultant nanocomposites with good thermal stability and mechanical stability. A series of one-dimensional (1D) zirconia/alumina nanocomposites were prepared by the deposition of zirconium species onto the 3D framework of boehmite nanofibres formed by dispersing boehmite nanofibres into a butanol solution, followed by calcination at 773 K. The materials were characterised by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscope (TEM), N2 adsorption/desorption, Infrared Emission Spectroscopy (IES), and Fourier Transform Infrared spectroscopy (FT-IR). The results demonstrated that when the molar percentage, X, X=100*Zr/(Al+Zr), was > 30%, extremely long ZrO2/Al2O3 composite nanorods with evenly distributed ZrO2 nanocrystals formed on their surface. The stacking of such nanorods gave rise to a new kind of macroporous material without the use of any organic space filler\template or other specific drying techniques. The mechanism for the formation of these long ZrO2/Al2O3 composite nanorods is proposed in this work. A series of solid-superacid catalysts were synthesised from fibrous ZrO2/Al2O3 core and shell nanocomposites. In this series, the zirconium molar percentage was varied from 2 % to 50 %. The ZrO2/Al2O3 nanocomposites and their solid superacid counterparts were characterised by a variety of techniques including 27Al MAS-NMR, SEM, TEM, XPS, Nitrogen adsorption and Infrared Emission Spectroscopy. NMR results show that the interaction between zirconia species and alumina strongly correlates with pentacoordinated aluminium sites. This can also be detected by the change in binding energy of the 3d electrons of the zirconium. The acidity of the obtained superacids was tested by using them as catalysts for the benzolyation of toluene. It was found that a sample with a 50 % zirconium molar percentage possessed the highest surface acidity equalling that of pristine sulfated zirconia despite the reduced mass of zirconia. Preparation of hierarchically macro-mesoporous catalyst by loading nanocrystallites on the framework of alumina bundles can provide an alternative system to design advanced nanocomposite catalyst with enhanced performance. A series of macro-mesoporous TiO2/Al2O3 nanocomposites with different morphologies were synthesised. The materials were calcined at 723 K and were characterised by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscope (TEM), N2 adsorption/desorption, Infrared Emission Spectroscopy (IES), and UV-visible spectroscopy (UV-visible). A modified approach was proposed for the synthesis of 1D (fibrous) nanocomposite with higher Ti/Al molar ratio (2:1) at lower temperature (<100oC), which makes it possible to synthesize such materials on industrial scale. The performances of a series of resultant TiO2/Al2O3 nanocomposites with different morphologies were evaluated as a photocatalyst for the phenol degradation under UV irradiation. The photocatalyst (Ti/Al =2) with fibrous morphology exhibits higher activity than that of the photocatalyst with microspherical morphology which indeed has the highest Ti to Al molar ratio (Ti/Al =3) in the series of as-synthesised hierarchical TiO2/Al2O3 nanocomposites. Furthermore, the photocatalytic performances, for the fibrous nanocomposites with Ti/Al=2, were optimized by calcination at elevated temperatures. The nanocomposite prepared by calcination at 750oC exhibits the highest catalytic activity, and its performance per TiO2 unit is very close to that of the gold standard, Degussa P 25. This work also emphasizes two advantages of the nanocomposites with fibrous morphology: (1) the resistance to sintering, and (2) good catalyst recovery.
Resumo:
It is almost a truism that persons who occupy formal bureaucratic positions in schools may not actually be leaders if they were not role incumbents in a bureaucracy. It is also clear from studies of grassroots leaders that without the qualities of skills of leadership no one would follow them because they have no formal, hierarchical role upon which others were dependent to them. One of the reasons for re-examining the nature of grassroots leaders is to attempt to recapture those tactics or strategies which might be reconceptualized and utilized within more formal settings so that role dependent leadership becomes more effectual and trustworthy than one that is totally dependent on role authority. This reasoning is especially a critical need if there is a desire to work towards more democratic and collaborative working arrangements between leaders and followers, and where more flexible and dynamic relationships promise higher levels of commitment and productivity. Hecksher (1994) speaks of such a reconceptualization as part of a shift from an emphasis on power to one centered on influence. This paper examines the nature of leadership before it was subjected to positivistic science and later behavioural studies. This move follows the advice of Heilbrunn (1996) who trenchantly observed that for leadership studies to grow as a discipline, “it will have to cast a wider net” (p.11). Willis et. Al. (2008) make a similar point when they lament that social scientist have forced favoured understanding bureaucracies rather than grassroots community organizations, yet much can be gained by being aware of the tactics and strategies used by grassroots leaders who depend on influence as opposed to power. This paper, then, aims to do this by posing a tentative model of grassroots leadership and then considering how this model might inform and be used by those responsible for developing school leaders.
Resumo:
Homo-and heteronuclear meso,meso-(E)-ethene-1,2-diyl-linked diporphyrins have been prepared by the Suzuki coupling of porphyrinylboronates and iodovinylporphyrins. Combinations comprising 5,10,15-triphenylporphyrin (TriPP) on both ends of the ethene-1,2-diyl bridge M 210 (M 2=H 2/Ni, Ni 2, Ni/Zn, H 4, H 2Zn, Zn 2) and 5,15-bis(3,5-di-tert-butylphenyl)porphyrinato-nickel(II) on one end and H 2, Ni, and ZnTriPP on the other (M 211), enable the first studies of this class of compounds possessing intrinsic polarity. The compounds were characterized by electronic absorption and steady state emission spectra, 1H NMR spectra, and for the Ni 2 bis(TriPP) complex Ni 210, single crystal X-ray structure determination. The crystal structure shows ruffled distortions of the porphyrin rings, typical of Ni II porphyrins, and the (E)-C 2H 2 bridge makes a dihedral angle of 50° with the mean planes of the macrocycles. The result is a stepped parallel arrangement of the porphyrin rings. The dihedral angles in the solid state reflect the interplay of steric and electronic effects of the bridge on interporphyrin communication. The emission spectra in particular, suggest energy transfer across the bridge is fast in conformations in which the bridge is nearly coplanar with the rings. Comparisons of the fluorescence behaviour of H 410 and H 2Ni10 show strong quenching of the free base fluorescence when the complex is excited at the lower energy component of the Soret band, a feature associated in the literature with more planar conformations. TDDFT calculations on the gas-phase optimized geometry of Ni 210 reproduce the features of the experimental electronic absorption spectrum within 0.1 eV. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
The aim of this study was to prepare and characterise composites of Soluble potato starch or hydroxypropylated maize starch with milled sugar cane fibre (i.e., bagasse). Prior to the preparation of the starch-fibre composites, the ‘cast’ and the ‘hot-pressed’ methods were investigated for the preparation of starch films in order to select the preferred preparation method. The physicochemical and mechanical properties of films conditioned at different relative humidities (RHs) were determined through moisture uptake, crystallinity, glass transition temperature (Tg), thermal properties, molecular structure and tensile tests. Hot-pressed starch films have ~5.5% less moisture, twice the crystallinity (~59%), higher Tg and Young’s modulus than cast starch films. The VH-type starch polymorph was observed to be present in the hot-pressed films. The addition of bagasse fibre to both starch types, prepared by hot-pressing, reduced the moisture uptake by up to 30% (cf., cast film) at 58% RH. The addition of 5 wt% fibre increased the tensile strength and Young’s modulus by 16% and 24% respectively. It significantly decreased the tensile strain by ~53%. Fourier Transform infrared (FT-IR) spectroscopy revealed differences in hydrogen bonding capacity between the films with fibre and those without fibre. The results have been explained on the basis of the intrinsic properties of starch and bagasse fibres.
Resumo:
Calcium silicate (CaSiO3, CS) ceramics have received significant attention for application in bone regeneration due to their excellent in vitro apatite-mineralization ability; however, how to prepare porous CS scaffolds with a controllable pore structure for bone tissue engineering still remains a challenge. Conventional methods could not efficiently control the pore structure and mechanical strength of CS scaffolds, resulting in unstable in vivo osteogenesis. The aim of this study is to set out to solve these problems by applying a modified 3D-printing method to prepare highly uniform CS scaffolds with controllable pore structure and improved mechanical strength. The in vivo osteogenesis of the prepared 3D-printed CS scaffolds was further investigated by implanting them in the femur defects of rats. The results show that the CS scaffolds prepared by the modified 3D-printing method have uniform scaffold morphology. The pore size and pore structure of CS scaffolds can be efficiently adjusted. The compressive strength of 3D-printed CS scaffolds is around 120 times that of conventional polyurethane templated CS scaffolds. 3D-Printed CS scaffolds possess excellent apatite-mineralization ability in simulated body fluids. Micro-CT analysis has shown that 3D-printed CS scaffolds play an important role in assisting the regeneration of bone defects in vivo. The healing level of bone defects implanted by 3D-printed CS scaffolds is obviously higher than that of 3D-printed b-tricalcium phosphate (b-TCP) scaffolds at both 4 and 8 weeks. Hematoxylin and eosin (H&E) staining shows that 3D-printed CS scaffolds induce higher quality of the newly formed bone than 3D-printed b-TCP scaffolds. Immunohistochemical analyses have further shown that stronger expression of human type I collagen (COL1) and alkaline phosphate (ALP) in the bone matrix occurs in the 3D-printed CS scaffolds than in the 3D-printed b-TCP scaffolds. Considering these important advantages, such as controllable structure architecture, significant improvement in mechanical strength, excellent in vivo osteogenesis and since there is no need for second-time sintering, it is indicated that the prepared 3D-printed CS scaffolds are a promising material for application in bone regeneration.
Resumo:
This study assessed the validity of a scale measuring psychologists' attitudes towards complementary and alternative therapies and compared the attitudes of psychologists with a previous sample of psychology students. The scale, derived from existing measures for medical professionals and previously tested on a sample of psychology students, was completed by practising psychologists (N = 122). The data were factor analysed, and three correlated subscales were identified, assessing the perceived importance of knowledge about available therapies, attitudes towards integration with psychological practice, and concerns about associated risks of use. This structure was similar, but not identical, to that found in a previous sample of psychology students; however, psychologists expressed more concern for risks associated with integration and were less likely to hold a positive attitude towards integration. This scale will be useful in gauging changes in psychologists' attitudes towards integrative practice over time.
Resumo:
Vapour phase assembly has been used for the first time to prepare co-crystals in which the primary intermolecular interaction is halogen bonding. Co-crystals of the nitroxide 1,1,3,3-tetramethylisoindolin-2-yloxyl (TMIO) and 1,2-diiodotetrafluorobenzene (1,2-DITFB) are readily formed under standard sublimation conditions. Single crystal X-ray diffraction confirmed the structure of a 2:2 cyclic tetramer, (TMIO)2·(1,2-DITFB)2, which exhibits a new halogen bonding motif, with each nitroxide oxygen atom accepting two halogen bonds. Powder X-ray diffraction confirmed the homogeneity of the bulk sample. The crystalline complex was further characterized in the solid state using thermal analysis and vibrational spectroscopy (infrared and Raman). Density functional theory calculations were also used to evaluate the enthalpy of formation, electrostatic potential and unpaired electron density of the complex. These findings illustrate the preparation of co-crystals where solution state methodology is problematic and the potential of this approach for the formation of novel organic spin systems.
Resumo:
Bone defects, especially large bone defects, remain a major challenge in orthopaedic surgery. Autologous bone transplantation is considered the most effective treatment, but insufficient donor tissue, coupled with concerns about donor site morbidity, has hindered this approach in large-scale applications. Alternative approaches include implanting biomaterials such as bioactive glass (BG), which has been widely used for bone defect healing, due to having generally good biocompatibility, and can be gradually biodegraded during the process of new bone formation. Mesoporous bioactive glass (MBG) is a newly developed bioactive glass which has been proven to have enhanced in-vitro bioactivity; however the in-vivo osteogenesis has not been studied. A critical problem in using the bone tissue engineering approach to restore large bone defects is that the nutrient supply and cell viability at the centre of the scaffold is severely hampered since the diffusion distance of nutrients and oxygen for cell survival is limited to 150-200µm. Cobalt ions has been shown to mimic hypoxia, which plays a pivotal role in coupling angiogenesis with osteogenesis in-vivo by activating hypoxia inducing factor-1α (HIF-1α) transcription factor, subsequently initiating the expression of genes associated with tissue regeneration. Therefore, one aim of this study is to investigate the in-vivo osteogenesis of MBG by comparison with BG and β-TCP, which are widely used clinically. The other aim is to explore hypoxia-mimicking biomaterials by incorporating Cobalt into MBG and β-TCP. MBG and β-TCP incorporated with 5% cobalt (5Co-MBG and 5CCP) have also been studied in-vivo to determine whether the hypoxic effect has a beneficial effect on the bone formation. The composition and microstructure of synthesised materials (BG, MBG, 5Co-MBG, 5CCP) were characterised, along with the mesopore properties of the MBG materials. Dissolution and cytotoxicity of the Co-containing materials were also investigated. Femoral samples with defects harvested at 4 and 8 weeks were scanned using micro-CT followed by processing for histology (H&E staining) to determine bone formation. Histology of MBG showed a slower rate of bone formation at 4 weeks than BG, however at 8 weeks it could be clearly seen that MBG had more bone formation. The in-vivo results show that the osteogenesis of MBG reciprocates the enhanced performance shown in-vitro compared to BG. Dissolution study showed that Co ions can be efficiently released from MBG and β-TCP in a controllable way. Low amounts of Co incorporated into the MBG and β-TCP showed no significant cytotoxicity and the Co-MBG powders maintained a mesopore structure although not as highly ordered as pure MBG. Preliminary study has shown that Co incorporated samples showed little to no bone formation, instead incurring high lymphocyte activity. Further studies need to be done on Co incorporated materials to determine the cause for high lymphocyte activity in-vivo, which appear to hinder bone formation. In conclusion, this study demonstrated the osteogenic activity of MBG and provided some valuable information of tissue reaction to Co-incorporated MBG and TCP materials.
Resumo:
Background In Australia and other developed countries, there are consistent and marked socioeconomic inequalities in health. Diet is a major contributing factor to the poorer health of lower socioeconomic groups: the dietary patterns of disadvantaged groups are least consistent with dietary recommendations for the prevention of diet-related chronic diseases compared with their more advantaged counterparts. Part of the reason that lower socioeconomic groups have poorer diets may be their consumption of takeaway foods. These foods typically have nutrient contents that fail to comply with the dietary recommendations for the prevention of chronic disease and associated risk factors. A high level of takeaway food consumption, therefore, may negatively influence overall dietary intakes and, consequently, lead to adverse health outcomes. Despite this, little attention has focused on the association between socioeconomic position (SEP) and takeaway food consumption, with the limited number of studies showing mixed results. Additionally, studies have been limited by only considering a narrow range of takeaway foods and not examining how different socioeconomic groups make choices that are more (or less) consistent with dietary recommendations. While a large number of earlier studies have consistently reported socioeconomically disadvantaged groups consume a lesser amount of fruit and vegetables, there is limited knowledge about the role of takeaway food in socioeconomic variations in fruit and vegetable intake. Furthermore, no known studies have investigated why there are socioeconomic differences in takeaway food consumption. The aims of this study are to: examine takeaway food consumption and the types of takeaway food consumed (healthy and less healthy) by different socioeconomic groups, to determine whether takeaway food consumption patterns explain socioeconomic variations in fruit and vegetable intake, and investigate the role of a range of psychosocial factors in explaining the association between SEP and takeaway food consumption and the choice of takeaway food. Methods This study used two cross-sectional population-based datasets: 1) the 1995 Australian National Nutrition Survey (NNS) which was conducted among a nationally representative sample of adults aged between 25.64 years (N = 7319, 61% response rate); and 2) the Food and Lifestyle Survey (FLS) which was conducted by the candidate and was undertaken among randomly selected adults aged between 25.64 years residing in Brisbane, Australia in 2009 (N = 903, 64% response rate). The FLS extended the NNS in several ways by describing current socioeconomic differences in takeaway food consumption patterns, formally assessing the mediated effect of takeaway food consumption to socioeconomic inequalities in fruit and vegetable intake, and also investigating whether (and which) psychosocial factors contributed to the observed socioeconomic variations in takeaway food consumption patterns. Results Approximately 32% of the NNS participants consumed takeaway food in the previous 24 hours and 38% of the FLS participants reported consuming takeaway food once a week or more. The results from analyses of the NNS and the FLS were somewhat mixed; however, disadvantaged groups were likely to consume a high level of �\less healthy. takeaway food compared with their more advantaged counterparts. The lower fruit and vegetable intake among lower socioeconomic groups was partly mediated by their high consumption of �\less healthy. takeaway food. Lower socioeconomic groups were more likely to have negative meal preparation behaviours and attitudes, and weaker health and nutrition-related beliefs and knowledge. Socioeconomic differences in takeaway food consumption were partly explained by meal preparation behaviours and attitudes, and these factors along with health and nutrition-related beliefs and knowledge appeared to contribute to the socioeconomic variations in choice of takeaway foods. Conclusion This thesis enhances our understanding of socioeconomic differences in dietary behaviours and the potential pathways by describing takeaway food consumption patterns by SEP, explaining the role of takeaway food consumption in socioeconomic inequalities in fruit and vegetable intake, and identifying the potential impact of psychosocial factors on socioeconomic differences in takeaway food consumption and the choice of takeaway food. Some important evidence is also provided for developing policies and effective intervention programs to improve the diet quality of the population, especially among lower socioeconomic groups. This thesis concludes with a discussion of a number of recommendations about future research and strategies to improve the dietary intake of the whole population, and especially among disadvantaged groups.