192 resultados para Ribosomal Dna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two transgenic callus lines of rice, stably expressing a β-glucuronidase (GUS) gene, were supertransformed with a set of constructs designed to silence the resident GUS gene. An inverted-repeat (i/r) GUS construct, designed to produce mRNA with self-complementarity, was much more effective than simple sense and antisense constructs at inducing silencing. Supertransforming rice calluses with a direct-repeat (d/r) construct, although not as effective as those with the i/r construct, was also substantially more effective in silencing the resident GUS gene than the simple sense and antisense constructs. DNA hybridisation analyses revealed that every callus line supertransformed with either simple sense or antisense constructs, and subsequently showing GUS silencing, had the silence-inducing transgenes integrated into the plant genome in inverted-repeat configurations. The silenced lines containing i/r and d/r constructs did not necessarily have inverted-repeat T-DNA insertions. There was significant methylation of the GUS sequences in most of the silenced lines but not in the unsilenced lines. However, demethylation treatment of silenced lines with 5-azacytidine did not reverse the post-transcriptional gene silencing (PTGS) of GUS. Whereas the levels of RNA specific to the resident GUS gene were uniformly low in the silenced lines, RNA specific to the inducer transgenes accumulated to a substantial level, and the majority of the i/r RNA was unpolyadenylated. Altogether, these results suggest that both sense- and antisense-mediated gene suppression share a similar molecular basis, that unpolyadenylated RNA plays an important role in PTGS, and that methylation is not essential for PTGS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The genomic sequence of an Australian isolate of carrot mottle umbravirus (CMoV-A) was determined from cDNA generated from dsRNA. This provides the first data on the genome organization and phylogeny of an umbravirus. The 4201-nucleotide genome contains four major open reading frames (ORFs). Analysis suggests that ORF2 encodes an RNA-dependent RNA polymerase, that ORF4 encodes a movement protein, and that the virus has no coat protein gene. The functions of ORFs 1 and 3 remain unknown. ORF2 is probably translated following ribosomal frameshifting. ORFs 3 and 4 are probably translated from a subgenomic mRNA. Sequence comparisons showed CMoV-A to be closely related to pea enation mosaic RNA2 NA2), but also to have affinities with the Bromoviridae. These findings shed light on the relationships between the luteoviruses, PEMV, and the umbraviruses and on the relationships between the carmo-like viruses and the Bromoviridae.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Subterranean clover stunt disease is an economically important aphid-borne virus disease affecting certain pasture and grain legumes in Australia. The virus associated with the disease, subterranean clover stunt virus (SCSV), was previously found to be representative of a new type of single-stranded DNA virus. Analysis of the virion DNA and restriction mapping of double-stranded cDNA synthesized from virion DNA suggested that SCSV has a segmented genome composed of 3 or 4 different species of circular ssDNA each of about 850-880 nucleotides. To further investigate the complexity of the SCSV genome, we have isolated the replicative form DNA from infected pea and from it prepared putative full-length clones representing the SCSV genome segments. Analysis of these clones by restriction mapping indicated that clones representing at least 4 distinct genomic segments were obtained. This method is thus suitable for generating an extensive genomic library of novel ssDNA viruses containing multiple genome segments such as SCSV and banana bunchy top virus. The N-terminal amino acid sequence and amino acid composition of the coat protein of SCSV were determined. Comparison of the amino acid sequence with partial DNA sequence data, and the distinctly different restriction maps obtained for the full-length clones suggested that only one of these clones contained the coat protein gene. The results confirmed that SCSV has a functionally divided genome composed of several distinct ssDNA circles each of about 1 kb.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human topoisomerase I (htopoI) is an enzyme that up to now was believed to function mainly in the removal of torsional stress generated during transcription and replication. In 1998, it was found that htopoI might play another important role in the cellular response to DNA damage -- the so-called htopoI damage response. Since this initial discovery, many studies have suggested that the htopoI damage response is involved in DNA repair as well as in apoptosis. Here we discuss the earliest as well as the latest results in this field. Combining all of the published and as yet unpublished results, we suggest and discuss a model of how htopoI may function during DNA repair and apoptosis. Furthermore, numerous results show that the htopoI damage response is not a spontaneous event, but is strictly regulated by cellular signalling pathways. We discuss which pathways may be involved and how the htopoI damage response is activated. Although the htopoI damage response was discovered several years ago, research in this area is just beginning. The future will surely bring more clarity regarding the precise mechanism behind the involvement of htopoI in DNA repair and apoptosis, as well as its implications for a broader understanding of how the human organism ensures genomic stability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 'human topoisomerase I (htopoI) damage response' was reported to be triggered by various kinds of DNA lesions. Also, a high and persistent level of htopoI cleavage complexes correlated with apoptosis. In the present study, we demonstrate that DNA damage-independent induction of cell death using colcemid and tumor necrosis factor is also accompanied by a strong htopoI response that correlates with the onset of apoptotic hallmarks. Consequently, these results suggest that htopoI cleavage complex formation may be caused by signaling pathways independent of the kind of cellular stress. Thus, protein interactions or signaling cascades induced by DNA damage or cellular stress might lead to the formation of stabilized cleavage complexes rather than the DNA lesion itself. Finally, we show that p53 not only plays a key role in the regulation of the htopoI response to UV-C irradiation but also to treatment with colcemid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent studies suggest that genetic and environmental factors do not account for all the schizophrenia risk and epigenetics also plays a role in disease susceptibility. DNA methylation is a heritable epigenetic modification that can regulate gene expression. Genome-Wide DNA methylation analysis was performed on post-mortem human brain tissue from 24 patients with schizophrenia and 24 unaffected controls. DNA methylation was assessed at over 485 000 CpG sites using the Illumina Infinium Human Methylation450 Bead Chip. After adjusting for age and post-mortem interval (PMI), 4 641 probes corresponding to 2 929 unique genes were found to be differentially methylated. Of those genes, 1 291 were located in a CpG island and 817 were in a promoter region. These include NOS1, AKT1, DTNBP1, DNMT1, PPP3CC and SOX10 which have previously been associated with schizophrenia. More than 100 of these genes overlap with a previous DNA methylation study of peripheral blood from schizophrenia patients in which 27 000 CpG sites were analysed. Unsupervised clustering analysis of the top 3 000 most variable probes revealed two distinct groups with significantly more people with schizophrenia in cluster one compared to controls (p = 1.74x10-4). The first cluster was composed of 88% of patients with schizophrenia and only 12% controls while the second cluster was composed of 27% of patients with schizophrenia and 73% controls. These results strongly suggest that differential DNA methylation is important in schizophrenia etiology and add support for the use of DNA methylation profiles as a future prognostic indicator of schizophrenia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The binding kinetics of NF-kappaB p50 to the Ig-kappaB site and to a DNA duplex with no specific binding site were determined under varying conditions of potassium chloride concentration using a surface plasmonresonance biosensor. Association and dissociation rate constants were measured enabling calculation of the dissociation constants. Under previously established high affinity buffer conditions, the k a for both sequences was in the order of 10(7) M-1s-1whilst the k d values varied 600-fold in a sequence-dependent manner between 10(-1) and 10(-4 )s-1, suggesting that the selectivity of p50 for different sequences is mediated primarily through sequence-dependent dissociation rates. The calculated K D value for the Ig-kappaB sequence was 16 pM, whilst the K D for the non-specific sequence was 9.9 nM. As the ionic strength increased to levels which are closer to that of the cellular environment, the binding of p50 to the non-specific sequence was abolished whilst the specific affinity dropped to nanomolar levels. From these results, a mechanism is proposed in which p50 binds specific sequences with high affinity whilst binding non-specific sequences weakly enough to allow efficient searching of the DNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of two different DNA minor groove binding molecules, Hoechst 33258 and distamycin A, on the binding kinetics of NF-κB p50 to three different specific DNA sequences was studied at various salt concentrations. Distamycin A was shown to significantly increase the dissociation rate constant of p50 from the sequences PRDII (5′-GGGAAATTCC-3′) and Ig-κ B (5′-GGGACTTTCC-3′) but had a negligible effect on the dissociation from the palindromic target-κB binding site (5′-GGGAATTCCC-3′). By comparison, the effect of Hoechst 33258 on binding of p50 to each sequence was found to be minimal. The dissociation rates for the protein–DNA complexes increased at higher potassium chloride concentrations for the PRDII and Ig-κB binding motifs and this effect was magnified by distamycin A. In contrast, p50 bound to the palindromic target-κB site with a much higher intrinsic affinity and exhibited a significantly reduced salt dependence of binding over the ionic strength range studied, retaining a KD of less than 10 pM at 150 mM KCl. Our results demonstrate that the DNA binding kinetics of p50 and their salt dependence is strongly sequence-dependent and, in addition, that the binding of p50 to DNA can be influenced by the addition of minor groove-binding drugs in a sequence-dependent manner.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To determine whether Sertoli cells influence DNA synthesis by rat peritubular myoid cells in vitro, the effects of Sertoli cells on [3H]thymidine incorporation by peritubular myoid cells in a coculture situation were examined. Incubation of testicular peritubular myoid cells with Sertoli cells in coculture induced a significant increase in [3H]thymidine incorporation by peritubular myoid cells. This indicates a cell-cell cooperation between Sertoli and peritubular myoid cells in the testis in terms of DNA synthesis. Secreted factors from Sertoli cells, as tested in a parabiotic culture situation, also increased [3H]thymidine incorporation by peritubular myoid cells. Moreover, in terms of total cellular protein, cocultures of Sertoli cells and peritubular myoid cells resulted in a significant increase when compared with the monocultures, and this coculture effect substituted for the stimulatory response of serum on peritubular myoid cell monoculture. This study investigated the cooperative role of Sertoli cells and peritubular myoid cells in paracrine regulation of testicular functions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The capacity to identify an unknown organism using the DNA sequence from a single gene has many applications. These include the development of biodiversity inventories (Janzen et al. 2005), forensics (Meiklejohn et al. 2011), biosecurity (Armstrong and Ball 2005), and the identification of cryptic species (Smith et al. 2006). The popularity and widespread use (Teletchea 2010) of the DNA barcoding approach (Hebert et al. 2003), despite broad misgivings (e.g., Smith 2005; Will et al. 2005; Rubinoff et al. 2006), attest to this. However, one major shortcoming to the standard barcoding approach is that it assumes that gene trees and species trees are synonymous, an assumption that is known not to hold in many cases (Pamilo and Nei 1988; Funk and Omland 2003). Biological processes that violate this assumption include incomplete lineage sorting and interspecific hybridization (Funk and Omland 2003). Indeed, simulation studies indicate that the concatenation approach (in which these two processes are ignored) can lead to statistically inconsistent estimation of the species tree (Kubatko and Degnan 2007)...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The SOS screen, as originally described by Perkins et al. (1999), was setup with the aim of identifying Arabidopsis functions that might potentially be involved in the DNA metabolism. Such functions, when expressed in bacteria, are prone to disturb replication and thus trigger the SOS response. Consistently, expression of AtRAD51 and AtDMC1 induced the SOS response in bacteria, even affecting E. coli viability. 100 SOS-inducing cDNAs were isolated from a cDNA library constructed from an Arabidopsis cell suspension that was found to highly express meiotic genes. A large proportion of these SOS+ candidates are clearly related to the DNA metabolism, others could be involved in the RNA metabolism, while the remaining cDNAs encode either totally unknown proteins or proteins that were considered as irrelevant. Seven SOS+ candidate genes are induced following gamma irradiation. The in planta function of several of the SOS-inducing clones was investigated using T-DNA insertional mutants or RNA interference. Only one SOS+ candidate, among those examined, exhibited a defined phenotype: silenced plants for DUT1 were sensitive to 5-fluoro-uracil (5FU), as is the case of the leaky dut-1 mutant in E. coli that are affected in dUTPase activity. dUTPase is essential to prevent uracil incorporation in the course of DNA replication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Homologous recombination catalyzed by the RAD51 recombinase is essential for maintaining genome integrity upon the induction of DNA double strand breaks and other DNA lesions. By enhancing the recombinase activity of RAD51, RAD51AP1 (RAD51-associated protein 1) serves a key role in homologous recombination-mediated chromosome damage repair. We show here that RAD51AP1 harbors two distinct DNA binding domains that are both needed for maximal protein activity under physiological conditions. We have finely mapped the two DNA binding domains in RAD51AP1 and generated mutant variants that are impaired in either or both of the DNA binding domains. Examination of these mutants reveals that both domains are indispensable for RAD51AP1 function in cells. These and other results illuminate the mechanistic basis of RAD51AP1 action in homologous DNA repair.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aberrant DNA replication is a primary cause of mutations that are associated with pathological disorders including cancer. During DNA metabolism, the primary causes of replication fork stalling include secondary DNA structures, highly transcribed regions and damaged DNA. The restart of stalled replication forks is critical for the timely progression of the cell cycle and ultimately for the maintenance of genomic stability. Our previous work has implicated the single-stranded DNA binding protein, hSSB1/NABP2, in the repair of DNA double-strand breaks via homologous recombination. Here, we demonstrate that hSSB1 relocates to hydroxyurea (HU)-damaged replication forks where it is required for ATR and Chk1 activation and recruitment of Mre11 and Rad51. Consequently, hSSB1-depleted cells fail to repair and restart stalled replication forks. hSSB1 deficiency causes accumulation of DNA strand breaks and results in chromosome aberrations observed in mitosis, ultimately resulting in hSSB1 being required for survival to HU and camptothecin. Overall, our findings demonstrate the importance of hSSB1 in maintaining and repairing DNA replication forks and for overall genomic stability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The repair of DNA double-strand breaks (DSBs) is a critical cellular mechanism that exists to ensure genomic stability. DNA DSBs are the most deleterious type of insult to a cell’s genetic material and can lead to genomic instability, apoptosis, or senescence. Incorrectly repaired DNA DSBs have the potential to produce chromosomal translocations and genomic instability, potentially leading to cancer. The prevalence of DNA DSBs in cancer due to unregulated growth and errors in repair opens up a potential therapeutic window in the treatment of cancers. The cellular response to DNA DSBs is comprised of two pathways to ensure DNA breaks are repaired: homologous recombination and non-homologous end joining. Identifying chemotherapeutic compounds targeting proteins involved in these DNA repair pathways has shown promise as a cancer therapy for patients, either as a monotherapy or in combination with genotoxic drugs. From the beginning, there have been a number of chemotherapeutic compounds that have yielded successful responses in the clinic, a number that have failed (CGK-733 and iniparib), and a number of promising targets for future studies identified. This review looks in detail at how the cell responds to these DNA DSBs and investigates the chemotherapeutic avenues that have been and are currently being explored to target this repair process.