118 resultados para Reconstruction Finance Corporation.
Resumo:
The silk protein fibroin (Bombyx mori) provides a potential substrate for use in ocular tissue reconstruction. We have previously demonstrated that transparent membranes produced from fibroin support cultivation of human limbal epithelial (HLE) cells (Tissue Eng A. 14(2008)1203-11). We extend this body of work to studies of limbal mesenchymal stromal cell (L-MSC) growth on fibroin. Also, we investigate the ability to produce a fibroin dual-layer scaffold with an upper HLE layer and lower L-MSC layer...
Resumo:
The collection of basic environmental data by industry members was successful and offers a way of overcoming the problems associated with differences in scale between the environment and fisheries datasets. A simple method of collecting environmental data was developed that was only a small time burden on skippers, yet has the potential to provide very useful information on the same scale as the catch and effort data recorded in the logbooks. The success of this trial was aided by the natural interest of fishers to learn more about the environment in which they fish. The archival temperature-depth tags chosen proved robust, reliable and easy to use. While the use of large scale environmental data may not yield significant improvements in stock assessments for most SESSF species, fine-scale data collected from selected vessels using methods developed during this project may, in the longer term, be useful for incorporation into CPUE standardisations in the future...
Resumo:
This article describes research conducted for the Japanese government in the wake of the magnitude 9.0 earthquake and tsunami that struck eastern Japan on March 11, 2011. In this study, material stock analysis (MSA) is used to examine the losses of building and infrastructure materials after this disaster. Estimates of the magnitude of material stock that has lost its social function as a result of a disaster can indicate the quantities required for reconstruction, help garner a better understanding of the volumes of waste flows generated by that disaster, and also help in the course of policy deliberations in the recovery of disaster-stricken areas. Calculations of the lost building and road materials in the five prefectures most affected were undertaken. Analysis in this study is based on the use of geographical information systems (GIS) databases and statistics; it aims to (1) describe in spatial terms what construction materials were lost, (2) estimate the amount of infrastructure material needed to rehabilitate disaster areas, and (3) indicate the amount of lost material stock that should be taken into consideration during government policy deliberations. Our analysis concludes that the material stock losses of buildings and road infrastructure are 31.8 and 2.1 million tonnes, respectively. This research approach and the use of spatial MSA can be useful for urban planners and may also convey more appropriate information about disposal based on the work of municipalities in disaster-afflicted areas.
Resumo:
The primary aim of this multidisciplinary project was to develop a new generation of breast implants. Disrupting the currently prevailing paradigm of silicone implants which permanently introduce a foreign body into mastectomy patients, highly porous implants developed as part of this PhD project are biodegradable by the body and augment the growth of natural tissue. Our technology platform leverages computer-assisted-design which allows us to manufacture fully patient-specific implants based on a personalised medicine approach. Multiple animal studies conducted in this project have shown that the polymeric implant slowly degrades within the body harmlessly while the body's own tissue forms concurrently.
Resumo:
The Jericho kimberlite (173.1. ±. 1.3. Ma) is a small (~. 130. ×. 70. m), multi-vent system that preserves products from deep (>. 1. km?) portions of kimberlite vents. Pit mapping, drill core examination, petrographic study, image analysis of olivine crystals (grain size distributions and shape studies), and compositional and mineralogical studies, are used to reconstruct processes from near-surface magma ascent to kimberlite emplacement and alteration. The Jericho kimberlite formed by multiple eruptions through an Archean granodiorite batholith that was overlain by mid-Devonian limestones ~. 1. km in thickness. Kimberlite magma ascended through granodiorite basement by dyke propagation but ascended through limestone, at least in part, by locally brecciating the host rocks. After the first explosive breakthrough to surface, vent deepening and widening occurred by the erosive forces of the waxing phase of the eruption, by gravitationally induced failures as portions of the vent margins slid into the vent and, in the deeper portions of the vent (>. 1. km), by scaling, as thin slabs burst from the walls into the vent. At currently exposed levels, coherent kimberlite (CK) dykes (<. 40. cm thick) are found to the north and south of the vent complex and represent the earliest preserved in-situ products of Jericho magmatism. Timing of CK emplacement on the eastern side of the vent complex is unclear; some thick CK (15-20. m) may have been emplaced after the central vent was formed. Explosive eruptive products are preserved in four partially overlapping vents that are roughly aligned along strike with the coherent kimberlite dyke. The volcaniclastic kimberlite (VK) facies are massive and poorly sorted, with matrix- to clast-supported textures. The VK facies fragmented by dry, volatile-driven processes and were emplaced by eruption column collapse back into the volcanic vents. The first explosive products, poorly preserved because of partial destruction by later eruptions, are found in the central-east vent and were formed by eruption column collapse after the vent was largely cleared of country rock debris. The next active vent was either the north or south vent. Collapse of the eruption column, linked to a vent widening episode, resulted in coeval avalanching of pipe margin walls into the north vent, forming interstratified lenses of country rock-rich boulder breccias in finer-grained volcaniclastic kimberlite. South vent kimberlite has similar characteristics to kimberlite of the north vent and likely formed by similar processes. The final eruptive phase formed olivine-rich and moderately sorted deposits of the central vent. Better sorting is attributed to recycling of kimberlite debris by multiple eruptions through the unconsolidated volcaniclastic pile and associated collapse events. Post-emplacement alteration varies in intensity, but in all cases, has overprinted the primary groundmass and matrix, in CK and VK, respectively. Erosion has since removed all limestone cover.
Resumo:
High-angular resolution diffusion imaging (HARDI) can reconstruct fiber pathways in the brain with extraordinary detail, identifying anatomical features and connections not seen with conventional MRI. HARDI overcomes several limitations of standard diffusion tensor imaging, which fails to model diffusion correctly in regions where fibers cross or mix. As HARDI can accurately resolve sharp signal peaks in angular space where fibers cross, we studied how many gradients are required in practice to compute accurate orientation density functions, to better understand the tradeoff between longer scanning times and more angular precision. We computed orientation density functions analytically from tensor distribution functions (TDFs) which model the HARDI signal at each point as a unit-mass probability density on the 6D manifold of symmetric positive definite tensors. In simulated two-fiber systems with varying Rician noise, we assessed how many diffusionsensitized gradients were sufficient to (1) accurately resolve the diffusion profile, and (2) measure the exponential isotropy (EI), a TDF-derived measure of fiber integrity that exploits the full multidirectional HARDI signal. At lower SNR, the reconstruction accuracy, measured using the Kullback-Leibler divergence, rapidly increased with additional gradients, and EI estimation accuracy plateaued at around 70 gradients.
Resumo:
This article addresses the new conditions under which teachers are making the choice to teach. Our core contention is that the reorganisation of schools according to the logic of the corporation, as described in Deleuze's ‘Postscript’, is changing the flows and forces on the primary surface of ‘the classroom’. These changes block the usual movements of teaching to discipline, normalise and individualise, which was the role of the school as precursor to the factory. Blocked from repeating, or returning, teaching as it has always been done, teachers must actively re-will to teach; teachers cannot use order words to name themselves and direct flows and forces as they have usually been done. While many choices to teach will be undertaken, the most popular being that of choosing to teach toward the corporation, the repetition of teaching toward enclosed spaces becomes less compelling. Like Nietzsche's Zarathustra, teachers, who have the courage to actively choose, face a new dawn in which teaching cannot be what it once was. In that moment they must choose to repeat that choice an infinite number of times, the choice of eternal return, and it is from here that new times might begin.
Resumo:
Due to ever increasing climate instability, the number of natural disasters affecting society and communities is expected to increase globally in the future, which will result in a growing number of casualties and damage to property and infrastructure. Such damage poses crucial challenges for recovery of interdependent critical infrastructures. Post-disaster reconstruction is a complex undertaking as it is not only closely linked to the well-being and essential functioning of society, but also requires a large financial commitment. Management of critical infrastructure during post-disaster recovery needs to be underpinned by a holistic recognition that the recovery of each individual infrastructure system (e.g. energy, water, transport and information and communication technology) can be affected by the interdependencies that exist between these different systems. A fundamental characteristic of these interdependencies is that failure of one critical infrastructure system can result in the failure of other interdependent infrastructures, leading to a cascade of failures, which can impede post-disaster recovery and delay the subsequent reconstruction process. Consequently, there is a critical need for developing a holistic strategy to assess the influence of infrastructure interdependencies, and for incorporating these interdependencies into a post-disaster recovery strategy. This paper discusses four key dimensions of interdependencies that need to be considered in a post-disaster reconstruction planning. Using key concepts and sub-concepts derived from the notion of interdependency, the paper examines how critical infrastructure interdependencies affect the recovery processes of damaged infrastructures.
Resumo:
In 2013 the OECD released its 15 point Action plan to deal with base erosion and profit shifting (BEPS). In that plan it was recognised that BEPS has a significant effect on developing countries. This is because the lack of tax revenue can lead to a critical underfunding of public investment that would help promote economic growth. To this end, the BEPS project is aimed at ensuring an inclusive approach to take into account not only views of the G20 and OECD countries but also the perspective of developing nations. With this focus in mind and in the context of developing nations, the purpose of this article is to consider a possible solution to profit shifting which occurs under the current transfer pricing regime, with that solution being unitary taxation with formulary apportionment. It does so using the finance sector as a specific case for application. Multinational financial institutions (MNFIs) play a significant role in financing activities of their clients in developing nations. Consistent with the ‘follow-the-client’ phenomenon which explains financial institution expansion, these entities are increasingly profiting from activities associated with this growing market. Further, not only are MNFIs persistent users of tax havens but also, more than other industries, have opportunities to reduce tax through transfer pricing measures. This article establishes a case for an industry specific adoption of unitary taxation with formulary apportionment as a viable alternative to the current regime. It argues that such a model would benefit not only developed nations but also developing nations which are currently suffering the effects of BEPS. In doing so, it considers the practicalities of such an implementation by examining both definitional issues and a possible formula for MNFIs. This article argues that, while there would be implementation difficulties to overcome, the current domestic models of formulary apportionment provide important guidance as to how the unitary business and business activities of MNFIs should be defined as well as factors that should be included in an allocation formula, along with the appropriate weighting. While it would be difficult for developing nations to adopt such a regime, it is argued that it would be no more difficult than addressing issues they face with the current transfer pricing regime. As such, this article concludes that unitary taxation with formulary apportionment is a viable industry specific alternative for MNFIs which would assist developing nations and aid independent fiscal soundness.
Resumo:
Multinational financial institutions (MNFIs) play a significant role in financing the activities of their clients in developing nations. Consistent with the ‘follow-the-customer’ phenomenon which explains financial institution expansion, these entities are increasingly profiting from activities associated with this growing market. However, not only are MNFIs persistent users of tax havens, but also, more than other industries, have the opportunity to reduce tax through transfer pricing measures. This paper establishes a case for an industry-specific adoption of unitary taxation with formulary apportionment as a viable alternative to the current regime. In doing so, it considers the practicalities of implementing this by examining both definitional issues and possible formulas for MNFIs. This paper argues that, while there would be implementation difficulties to overcome, the current domestic models of formulary apportionment provide important guidance as to how the unitary business and business activities of MNFIs should be defined, as well as the factors that should be included in an allocation formula, and the appropriate weighting. This paper concludes that unitary taxation with formulary apportionment is a viable industry-specific alternative for MNFIs.
Resumo:
When a community already torn by a prolonged war is subsequently subjected to being hit by a natural disaster, the combined impact of such disasters can be extremely devastating. Affected communities often face enormous challenges during the long-term reconstruction, mainly due to the lack of a viable community involvement process. In post-war settings, affected communities are often conceived as being disabled and are hardly ever consulted when reconstruction projects are instigated. This lack of community involvement often leads to poor project planning, decreased community support and an unsustainable completed project. The impact of war, coupled with the tensions created by the poor housing provisions, often hinder the affected residents from integrating permanently into their home communities. This paper identifies a number of fundamental factors that act as barriers to community participation in reconstruction projects. The paper is based on a statistical analysis of a questionnaire survey administered in 2012 in Afghanistan.
Resumo:
The importance of developing effective disaster management strategies has significantly grown as the world continues to be confronted with unprecedented disastrous events. Factors such as climate instability, recent urbanization along with rapid population growth in many cities around the world have unwittingly exacerbated the risks of potential disasters, leaving a large number of people and infrastructure exposed to new forms of threats from natural disasters such as flooding, cyclones, and earthquakes. With disasters on the rise, effective recovery planning of the built environment is becoming imperative as it is not only closely related to the well-being and essential functioning of society, but it also requires significant financial commitment. In the built environment context, post-disaster reconstruction focuses essentially on the repair and reconstruction of physical infrastructures. The reconstruction and rehabilitation efforts are generally performed in the form of collaborative partnerships that involve multiple organisations, enabling the restoration of interdependencies that exist between infrastructure systems such as energy, water (including wastewater), transport, and telecommunication systems. These interdependencies are major determinants of vulnerabilities and risks encountered by critical infrastructures and therefore have significant implications for post-disaster recovery. When disrupted by natural disasters, such interdependencies have the potential to promote the propagation of failures between critical infrastructures at various levels, and thus can have dire consequences on reconstruction activities. This paper outlines the results of a pilot study on how elements of infrastructure interdependencies have the potential to impede the post-disaster recovery effort. Using a set of unstructured interview questionnaires, plausible arguments provided by seven respondents revealed that during post-disaster recovery, critical infrastructures are mutually dependent on each other’s uninterrupted availability, both physically and through a host of information and communication technologies. Major disruption to their physical and cyber interdependencies could lead to cascading failures, which could delay the recovery effort. Thus, the existing interrelationship between critical infrastructures requires that the entire interconnected network be considered when managing reconstruction activities during the post-disaster recovery period.
Resumo:
Reconstructing 3D motion data is highly under-constrained due to several common sources of data loss during measurement, such as projection, occlusion, or miscorrespondence. We present a statistical model of 3D motion data, based on the Kronecker structure of the spatiotemporal covariance of natural motion, as a prior on 3D motion. This prior is expressed as a matrix normal distribution, composed of separable and compact row and column covariances. We relate the marginals of the distribution to the shape, trajectory, and shape-trajectory models of prior art. When the marginal shape distribution is not available from training data, we show how placing a hierarchical prior over shapes results in a convex MAP solution in terms of the trace-norm. The matrix normal distribution, fit to a single sequence, outperforms state-of-the-art methods at reconstructing 3D motion data in the presence of significant data loss, while providing covariance estimates of the imputed points.