810 resultados para Program B : Sustainable Built Assets
Using Agents for Mining Maintenance Data while interacting in 3D Objectoriented Virtual Environments
Resumo:
This report demonstrates the development of: (a) object-oriented representation to provide 3D interactive environment using data provided by Woods Bagot; (b) establishing basis of agent technology for mining building maintenance data, and (C) 3D interaction in virtual environments using object-oriented representation. Applying data mining over industry maintenance database has been demonstrated in the previous report.
Resumo:
In August 2005, House of Representatives Standing Committee on Environment and Heritage released the Sustainable Cities report. The Australian Sustainable Built Environment Council (ASBEC) wrote to the Committee endorsing Recommendations 1 to 3, and Recommendation 31. In particular Recommendation 31 states: The committee recommends that, with reference to the Swedish model of environmental objectives, the Australian Government:
Resumo:
Building for a sustainable environment requires sustainable infrastructure assets. Infrastructure capacity management is the process of ensuring optimal provision of such infrastructure assets. Effectiveness in this process will enable the infrastructure asset owners and its stakeholders to receive full value on their investment. Business research has shown that an organisation can only achieve business value when it has the right capabilities. This paradigm can also be applied to infrastructure capacity management. With limited access to resources, the challenge for infrastructure organisations is to identify and develop core capabilities to enable infrastructure capacity management. This chapter explores the concept of capability and identifies the core capability needed in infrastructure capacity management. Through a case study of the Port of Brisbane, this chapter shows that infrastructure organisations must develop their intelligence gathering capability to effectively manage the capacity of their infrastructure assets.
Resumo:
A major project in the Sustainable Built Assets core area is the Sustainable Sub-divisions – Ventilation Project that is the second stage of a planned series of research projects focusing on sustainable sub-divisions. The initial project, Sustainable Sub-divisions: Energy focused on energy efficiency and examined the link between dwelling energy efficiency and sub-divisional layout. In addition, the potential for on site electricity generation, especially in medium and high-density developments, was also examined. That project recommended that an existing lot-rating methodology be adapted for use in SEQ through the inclusion of sub divisional appropriate ventilation data. Acquiring that data is the object of this project. The Sustainable Sub-divisions; Ventilation Project will produce a series of reports. The first report (Report 2002-077-B-01) summarised the results from an industry workshop and interviews that were conducted to ascertain the current attitudes and methodologies used in contemporary sub-division design in South East Queensland. The second report (Report 2002-077-B-02) described how the project is being delivered as outlined in the Project Agreement. It included the selection of the case study dwellings and monitoring equipment and data management process. This third report (Report 2002-077-B-03) provides an analysis and review of the approaches recommended by leading experts, government bodies and professional organizations throughout Australia that aim to increase the potential for passive cooling and heating at the subdivision stage. This data will inform issues discussed on the development of the enhanced lot-rating methodology in other reports of this series. The final report, due in June 2007, will detail the analysis of data for winter 2006 and summer 2007, leading to the development and delivery of the enhanced lot-rating methodology.
Resumo:
Purpose – This purpose of this paper is to introduce the new Smart and Sustainable Built Environment (SASBE) journal to readers by discussing the background and underlying principles of its establishment, the editorial visions, and the range of papers selected in this first issue. It will encourage readers and potential authors to consider the need for integrated approaches to sustainability problems, to take on emerging challenges in the built environment and to join the SASBE journal in finding and promoting optimum solutions. Design/methodology/approach – This paper explores the evolving nature of sustainability, the recent trends of sustainability endeavours in built environment and the current knowledge gaps. The need to bridge these gaps is then discussed in the context of suggested remedies and justifications. This leads to the development of a smart and sustainable built environment as a R&D philosophy for world researchers as part of their interactions with professional bodies and agencies such as CIB, UNEP and iiSBE, and the establishment of the SASBE journal. Findings – Sustainable development in the built environment requires holistic thinking and decision making and innovative solutions that enhance sustainability and result in mutually beneficial outcomes for all stakeholders. A dedicated forum, through the journal of SASBE, is much needed for the exploration, discussion, debate, and promotion of these integrated approaches. Originality/value – Through presenting an overview of the current issues and identifying gaps in the understanding and pursuit of sustainability in the built environment, this paper suggests potential areas for future research and practice as well as possible topics for authors to make new contributions.
Resumo:
According to the Australian Government, when combined with expected population growth and internal migration, expected changes in temperature and rainfall are expected to increase road maintenance costs by over 30 percent by 2100. This presents a significant future economic risk, in response, this paper will discuss the potential for roads to improve their resilience to the impacts of climate change and other key pressures. The paper will also highlight how such measures can inform state and national main road infrastructure planning and reduce future associated risks and costs.
Resumo:
Efforts to reduce carbon emissions in the buildings sector have been focused on encouraging green design, construction and building operation; however, the business case is not very compelling if considering the energy cost savings alone. In recent years green building has been driven by a sense that it will improve the productivity of occupants,something with much greater economic returns than energy savings. Reducing energy demand in green commercial buildings in a way that encourages greater productivity is not yet well understood as it involves a set of complex and interdependent factors. This project investigates these factors and focuses on the performance of and interaction between: green design elements, internal environmental quality, occupant experience, tenant/leasing agreements, and building regulation and management. This paper suggests six areas of strategic research that are needed to understand how conditions can be created to support productivity in green buildings, and deliver significant energy consumption reductions.
Resumo:
Biophilic urbanism, or urban design which refl ects human’s innate need for nature in and around and on top of our buildings, stands to make signifi cant contributions to a range of national, state and local government policies related to climate change mitigation and adaptation. Potential benefi ts include reducing the heat island effect, reducing energy consumption for thermal control, enhancing urban biodiversity, improving well being and productivity, improving water cycle management, and assisting in the response to growing needs for densifi cation and revitalisation of cities. This discussion paper will give an overview of the concept of biophilia and consider enablers and disablers to its application to urban planning and design. The paper will present findings from stakeholder engagement related to a consideration of the economics of the use of biophilic elements (direct and indirect). The paper outlines eight strategic areas being considered in the project, including how a ‘daily minimum dose’ of nature can be received through biophilic elements, and how planning and policy can underpin effective biophilic urbanism.
Resumo:
The current global economic climate has focused the attention of construction practitioners on the benefits that applied research can deliver to their business. This paper draws on the history, achievements and lessons of the Australian CRC for Construction Innovation—the first national R&D and implementation centre servicing Australia’s built environment industry. It then explores the model of its planned successor - the Sustainable Built Environment Centre as industry, government and research stakeholders seek a stronger engagement in a more environmentally, socially and economically sustainable future.
Resumo:
Creating climate resilient, low-carbon urban environments and assets is a policy goal of many governments and city planners today, and an important issue for constructed asset owners. Stakeholders and decision makers in urban environments are also responding to growing evidence that cities need to increase their densities to reduce their footprint in the face of growing urban populations. Meanwhile, research is highlighting the importance of balancing such density with urban nature, to provide a range of health and wellbeing benefits to residents as well as to mitigate the environmental and economic impacts of heavily built up, impervious urban areas. Concurrently achieving this suite of objectives requires the coordination and cooperation of multiple stakeholder groups, with urban development and investment increasingly involving many private and public actors. Strategies are needed that can provide ‘win-win’ outcomes to benefit these multiple stakeholders, and provide immediate benefits while also addressing the emerging challenges of climate change, resource shortages and urban population growth. Within this context, ‘biophilic urbanism’ is emerging as an important design principle for buildings and urban areas. Through the use of a suite of natural design elements, biophilic urbanism has the potential to address multiple pressures related to climate change, increasing urban populations, finite resources and human’s inherent need for contact with nature. The principle directs the creation of urban environments that are conducive to life, delivering a range of benefits to stakeholders including building owners, occupiers and the surrounding community. This paper introduces the principle of biophilic urbanism and discusses opportunities for improved building occupant experience and performance of constructed assets, as well as addressing other sustainability objectives including climate change mitigation and adaptation. The paper presents an emerging process for considering biophilic design opportunities at different scales and highlights implications for the built environment industry. This process draws on findings of a study of leading cities internationally and learnings related to economic and policy considerations. This included literature review, two stakeholder workshops, and extensive industry consultation, funded by the Sustainable Built Environment National Research Centre through core project partners Western Australian Department of Finance, Parsons Brinckerhoff, Townsville City Council CitySolar Program, Green Roofs Australasia, and PlantUp.
Resumo:
The Cooperative Research Centre (CRC) for Construction Innovation research project 2001-008-C: ‘Project Team Integration: Communication, Coordination and Decision Support’, is supported by a number of Australian industry, government and university based project partners including: Queensland University of Technology (QUT); Commonwealth Scientific Industrial Research Organisation (CSIRO), University of Newcastle; Queensland Department of Public Works (QDPW); and the Queensland Department of Main Roads (QDMR). Supporting the various research aims and objectives of the 2001-008-C (Part B) QUT / Industry Partner agreements, and as a major deliverable for the project, this report is not intended as a comprehensive statement of Architectural, Engineering and Contractor (AEC) industry best practice recommendations. Rather it should read as a set of research and industry recommended guidelines, based on extensive literature reviews and two years worth of investigative activities examining both public and private industry uptake of innovative information and communication technology (ICT) solutions, whilst highlighting the overall need for culture change.
Resumo:
Durability issues of reinforced concrete construction cost millions of dollars in repair or demolition. Identification of the causes of degradation and a prediction of service life based on experience, judgement and local knowledge has limitations in addressing all the associated issues. The objective of this CRC CI research project is to develop a tool that will assist in the interpretation of the symptoms of degradation of concrete structures, estimate residual capacity and recommend cost effective solutions. This report is a documentation of the research undertaken in connection with this project. The primary focus of this research is centred on the case studies provided by Queensland Department of Main Roads (QDMR) and Brisbane City Council (BCC). These organisations are endowed with the responsibility of managing a huge volume of bridge infrastructure in the state of Queensland, Australia. The main issue to be addressed in managing these structures is the deterioration of bridge stock leading to a reduction in service life. Other issues such as political backlash, public inconvenience, approach land acquisitions are crucial but are not within the scope of this project. It is to be noted that deterioration is accentuated by aggressive environments such as salt water, acidic or sodic soils. Carse, 2005, has noted that the road authorities need to invest their first dollars in understanding their local concretes and optimising the durability performance of structures and then look at potential remedial strategies.