845 resultados para Process mining


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human resources are often responsible for the execution of business processes. In order to evaluate resource performance and identify best practices as well as opportunities for improvement, managers need objective information about resource behaviours. Companies often use information systems to support their processes and these systems record information about process execution in event logs. We present a framework for analysing and evaluating resource behaviour through mining such event logs. The framework provides a method for extracting descriptive information about resource skills, utilisation, preferences, productivity and collaboration patterns; a method for analysing relationships between different resource behaviours and outcomes; and a method for evaluating the overall resource productivity, tracking its changes over time and comparing it with the productivity of other resources. To demonstrate the applicability of our framework we apply it to analyse behaviours of employees in an Australian company and evaluate its usefulness by a survey among managers in industry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background The requirement for dual screening of titles and abstracts to select papers to examine in full text can create a huge workload, not least when the topic is complex and a broad search strategy is required, resulting in a large number of results. An automated system to reduce this burden, while still assuring high accuracy, has the potential to provide huge efficiency savings within the review process. Objectives To undertake a direct comparison of manual screening with a semi‐automated process (priority screening) using a machine classifier. The research is being carried out as part of the current update of a population‐level public health review. Methods Authors have hand selected studies for the review update, in duplicate, using the standard Cochrane Handbook methodology. A retrospective analysis, simulating a quasi‐‘active learning’ process (whereby a classifier is repeatedly trained based on ‘manually’ labelled data) will be completed, using different starting parameters. Tests will be carried out to see how far different training sets, and the size of the training set, affect the classification performance; i.e. what percentage of papers would need to be manually screened to locate 100% of those papers included as a result of the traditional manual method. Results From a search retrieval set of 9555 papers, authors excluded 9494 papers at title/abstract and 52 at full text, leaving 9 papers for inclusion in the review update. The ability of the machine classifier to reduce the percentage of papers that need to be manually screened to identify all the included studies, under different training conditions, will be reported. Conclusions The findings of this study will be presented along with an estimate of any efficiency gains for the author team if the screening process can be semi‐automated using text mining methodology, along with a discussion of the implications for text mining in screening papers within complex health reviews.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Companies standardise and automate their business processes in order to improve process eff ciency and minimise operational risks. However, it is di fficult to eliminate all process risks during the process design stage due to the fact that processes often run in complex and changeable environments and rely on human resources. Timely identification of process risks is crucial in order to insure the achievement of process goals. Business processes are often supported by information systems that record information about their executions in event logs. In this article we present an approach and a supporting tool for the evaluation of the overall process risk and for the prediction of process outcomes based on the analysis of information recorded in event logs. It can help managers evaluate the overall risk exposure of their business processes, track the evolution of overall process risk, identify changes and predict process outcomes based on the current value of overall process risk. The approach was implemented and validated using synthetic event logs and through a case study with a real event log.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we illustrate a set of features of the Apromore process model repository for analyzing business process variants. Two types of analysis are provided: one is static and based on differences on the process control flow, the other is dynamic and based on differences in the process behavior between the variants. These features combine techniques for the management of large process model collections with those for mining process knowledge from process execution logs. The tool demonstration will be useful for researchers and practitioners working on large process model collections and process execution logs, and specifically for those with an interest in understanding, managing and consolidating business process variants both within and across organizational boundaries.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador: