95 resultados para Phosphatidylinositol 3-Kinase
Resumo:
Background: Methotrexate alone or in combination with other agents is the standard treatment for moderate-to-severe rheumatoid arthritis. As the biological agents are expensive, they are not usually used until methotrexate has failed to give a good response. Thus, there is scope for the development of cheaper drugs that can be used instead of methotrexate or in addition to methotrexate. Objectives/methods: Pamapimod is a p38α inhibitor being developed for use in the treatment of rheumatoid arthritis. The objective was to evaluate the recent clinical trials of pamapimod in subjects with rheumatoid arthritis. Results: There is no clear cut evidence that pamapimod alone or in the presence of methotrexate is efficacious in subjects with rheumatoid arthritis, but it does cause adverse effects. Conclusion: It is unlikely that pamapimod will be useful in the treatment of rheumatoid arthritis.
Resumo:
This guide explains how copyright law applies to Australian government material, how copyright can be managed to facilitate beneficial open access practices by government, how CC licenses can be used to achieve open access to government material, and provides practical step-by-step guidance for agencies and their officers on licensing and use of government copyright materials under CC 3.0 Australia licences.
Resumo:
The structures of the anhydrous 1:1 proton-transfer compounds of isonipecotamide (4-carbamoylpiperidine) with picric acid and 3,5-dinitrosalicylic acid, namely 4-carbamoylpiperidinium 2,4,6-trinitrophenolate, C6H13N2O8+ C6H2N3O7- (I) and 4-carbamoylpiperidinium 2-carboxy-4,6-dinitrophenolate, C6H13N2O8+ C7H3N2O7-: two forms, the monoclinic alpha-polymorph (II) and the triclinic beta-polymorph (III) have been determined at 200 K. All compounds form hydrogen-bonded structures, one-dimensional in (II), two-dimensional in (I) and three-dimensional in (III). In (I), the cations form centrosymmetric cyclic head-to-tail hydrogen-bonded homodimers [graph set R2/2(14)] through lateral duplex piperidinium N---H...O(amide) interactions. These dimers are extended into a two-dimensional network structure through further interactions with anion phenolate-O and nitro-O acceptors, including a direct symmetric piperidinium N-H...O(phenol),O(nitro) cation--anion association [graph set R2/1(6)]. The monoclinic polymorph (II) has a similar R2/1(6) cation-anion hydrogen-bonding interaction to (I) but with an additional conjoint symmetrical R1/2(4) interaction as well as head-to-tail piperidinium N-H...O(amide) O hydrogen bonds and amide N-H...O(carboxyl) hydrogen bonds, give a network structure which include large R3/4(20) rings. The hydrogen bonding in the triclinic polymorph (III) is markedly different from that of monoclinic (II). The asymmetric unit contains two independent cation-anion pairs which associate through cyclic piperidinium N-H...O,O'(carboxyl) interactions [graph set R2/1(4)]. The cations also show the zig-zag head-to-tail piperidinium N-H...O(amide) hydrogen-bonded chain substructures found in (II) but in addition feature amide N-H...O(nitro) and O(phenolate) and amide N-H...O(nitro) associations. As well there is a centrosymmetric double-amide N-H...O(carboxyl) bridged bis(cation-anion) ring system [graph set R2/4(8)] in the three-dimensional framework. The structures reported here demonstrate the utility of the isonipecotamide cation as a synthon with previously unrecognized potential for structure assembly applications. Furthermore, the structures of the two polymorphic 3,5-dinitrosalicylic acid salts show an unusual dissimilarity in hydrogen-bonding characteristics, considering that both were obtained from identical solvent systems.
Resumo:
The structures of the anhydrous 1:1 proton-transfer compounds of isonipecotamide (piperidine-4-carboxamide) with the three isomeric mononitro-substituted benzoic acids and 3,5-dinitrobenzoic acid, namely 4-carbamoylpiperidinium 2-nitrobenzoate (I), 4-carbamoylpiperidinium 3-nitrobenzoate (II), 4-carbamoylpiperidinium 4-nitrobenzoate (III), (C6H13N2O+ C7H4NO4-) and 4-carbamoylpiperidinium 3,5-dinitrobenzoate (IV) (C6H13N2O+ C7H5N2O6-)respectively, have been determined at 200 K. All salts form hydrogen-bonded structures: three-dimensional in (I), two-dimensional in (II) and (III) and one-dimensional in (IV). Featured in the hydrogen bonding of three of these [(I), (II) and (IV)] is the cyclic head-to-head amide--amide homodimer motif [graph set R2/2~(8)] through a duplex N---H...O association, the dimer then giving structure extension via either piperidinium or amide H-donors and carboxylate-O and in some examples [(II) and (IV)], nitro-O atom acceptors. In (I), the centrosymmetric amide-amide homodimers are expanded laterally through N-H...O hydrogen bonds via cyclic R2/4(8) interactions forming ribbons which extend along the c cell direction. These ribbons incorporate the 2-nitrobenzoate cations through centrosymmetric cyclic piperidine N-H...O(carboxyl) associations [graph set R4/4(12)], giving inter-connected sheets in the three-dimensional structure. In (II) in which no amide-amide homodimer is present, duplex piperidinium N-H...O(amide) hydrogen-bonding homomolecular associations [graph set R2/2(14)] give centrosymmetric head-to-tail dimers. Structure extension occurs through hydrogen-bonding associations between both the amide H-donors and carboxyl and nitro O-acceptors as well as a three-centre piperidinium N-H...O,O'(carboxyl) cyclic R2/1(4) association giving the two-dimensional network structure. In (III), the centrosymmetric amide-amide dimers are linked through the two carboxyl O-atom acceptors of the anions via bridging piperidinium and amide N-H...O,O'...H-N(amide) hydrogen bonds giving the two-dimensional sheet structure which features centrosymmetric cyclic R4/4(12) associations. In (IV), the amide-amide dimer is also centrosymmetric with the dimers linked to the anions through amide N-H...O(nitro) interactions. The piperidinium groups extend the structure into one-dimensional ribbons via N-H...O(carboxyl) hydrogen bonds. The structures reported here further demonstrate the utility of the isonipecotamide cation in molecular assembly and highlight the efficacy of the cyclic R2/2(8) amide-amide hydrogen-bonding homodimer motif in this process and provide an additional homodimer motif type in the head-to-tail R2/2(14) association.
Resumo:
Numerous difficulties are associated with the conduct of preclinical studies related to skin and wound repair. Use of small animal models such as rodents is not optimal because of their physiological differences to human skin and mode of wound healing. Although pigs have previously been used because of their human-like mode of healing, the expense and logistics related to their use also renders them suboptimal. In view of this, alternatives are urgently required to advance the field. The experiments reported herein were aimed at developing and validating a simple, reproducible, three-dimensional ex vivo de-epidermised dermis human skin equivalent wound model for the preclinical evaluation of novel wound therapies. Having established that the human skin equivalent wound model does in fact “heal," we tested the effect of two novel wound healing therapies. We also examined the utility of the model for studies exploring the mechanisms underpinning these therapies. Taken together the data demonstrate that these new models will have wide-spread application for the generation of fundamental new information on wound healing processes and also hold potential in facilitating preclinical optimization of dosage, duration of therapies, and treatment strategies prior to clinical trials.