154 resultados para PYRIDINE-NUCLEOTIDE CYCLE
Resumo:
In the mammary gland, Wnt signals are strongly implicated in initial development of the mammary rudiments and in the ductal branching and alveolar morphogenesis that occurs during pregnancy. Previously, we identified two Wnt signaling pathway-implicated genes, PPP3CA and MARK4, as having a role in more aggressive and potentially metastatic breast tumors. In this study, we examined two SNPs within PPP3CA and MARK4 in an Australian case-control study population for a potential role in human breast cancers. 182 cases and 180 controls were successfully genotyped for the PPP3CA SNP (rs2850328) and 182 cases and 177 controls were successfully genotyped for the MARK4 SNP (rs2395) using High Resolution Melt (HRM) analysis. Genotypes of randomly selected samples for both SNPs were validated by dye terminator sequencing. Chi-square tests were performed to determine any significant differences in the genotype and allele frequencies between the cases and controls. Chi-square analysis showed no statistically significant difference (p > .05) for genotype frequencies between cases and controls for rs2850328 (χ2 = 1.2, p = .5476) or rs2395 (χ2 = .3, p = .8608). Similarly, no statistical difference was observed for allele frequencies for rs2850328 (χ2 = .68, p = .4108) or rs2395 (χ2 = .02, p = .893). Even though an association of the polymorphisms rs2850328 and rs2395 and breast cancer was not detected in our case-control study population, other variants within the PPP3CA and MARK4 genes may still be associated with breast cancer, as both genes are implicated with processes involved in the disease as well as their mutual partaking in the Wnt signaling pathway.
Resumo:
microRNAs are small, non-coding RNAs that influence gene expression on a post-transcriptional level. They participate in diverse biological pathways and may act as either tumor suppressor genes or oncogenes. As they may have an effect on thousands of target mRNAs, single-nucleotide polymorphisms in microRNA genes might have major functional consequences, because the microRNA's properties and/or maturation may change. miR-196a has been reported to be aberrantly expressed in breast cancer tissue. Additionally, the SNP rs11614913 in hsa-mir-196a-2 has been found to be associated with breast cancer risk in some studies although not in others. This study evaluated the association between rs11614913 and breast cancer risk in a Caucasian case-control cohort in Queensland, Australia. Results do not support an association of the tested hsa-mir-196a-2 polymorphism with breast cancer susceptibility in this cohort. As there is a discrepancy between our results and previous findings, it is important to assess the role of rs11614913 in breast cancer by further larger studies investigating different ethnic groups.
Resumo:
We have identified a migraine locus on chromosome 19p13.3/2 using linkage and association analysis. We isolated 48 single-nucleotide polymorphisms within the locus, of which we genotyped 24 in a Caucasian population comprising 827 unrelated cases and 765 controls. Five single-nucleotide polymorphisms within the insulin receptor gene showed significant association with migraine. This association was independently replicated in a case-control population collected separately. We used experiments with insulin receptor RNA and protein to investigate functionality for the migraine-associated single-nucleotide polymorphisms. We suggest possible functions for the insulin receptor in migraine pathogenesis.
Resumo:
With an increased emphasis on genotyping of single nucleotide polymorphisms (SNPs) in disease association studies, the genotyping platform of choice is constantly evolving. In addition, the development of more specific SNP assays and appropriate genotype validation applications is becoming increasingly critical to elucidate ambiguous genotypes. In this study, we have used SNP specific Locked Nucleic Acid (LNA) hybridization probes on a real-time PCR platform to genotype an association cohort and propose three criteria to address ambiguous genotypes. Based on the kinetic properties of PCR amplification, the three criteria address PCR amplification efficiency, the net fluorescent difference between maximal and minimal fluorescent signals and the beginning of the exponential growth phase of the reaction. Initially observed SNP allelic discrimination curves were confirmed by DNA sequencing (n = 50) and application of our three genotype criteria corroborated both sequencing and observed real-time PCR results. In addition, the tested Caucasian association cohort was in Hardy-Weinberg equilibrium and observed allele frequencies were very similar to two independently tested Caucasian association cohorts for the same tested SNP. We present here a novel approach to effectively determine ambiguous genotypes generated from a real-time PCR platform. Application of our three novel criteria provides an easy to use semi-automated genotype confirmation protocol.
Resumo:
Endometrial cancer is one of the most common female diseases in developed nations and is the most commonly diagnosed gynaecological cancer in Australia. The disease is commonly classified by histology: endometrioid or non-endometrioid endometrial cancer. While non-endometrioid endometrial cancers are accepted to be high-grade, aggressive cancers, endometrioid cancers (comprising 80% of all endometrial cancers diagnosed) generally carry a favourable patient prognosis. However, endometrioid endometrial cancer patients endure significant morbidity due to surgery and radiotherapy used for disease treatment, and patients with recurrent disease have a 5-year survival rate of less than 50%. Genetic analysis of women with endometrial cancer could uncover novel markers associated with disease risk and/or prognosis, which could then be used to identify women at high risk and for the use of specialised treatments. Proteases are widely accepted to play an important role in the development and progression of cancer. This PhD project hypothesised that SNPs from two protease gene families, the matrix metalloproteases (MMPs, including their tissue inhibitors, TIMPs) and the tissue kallikrein-related peptidases (KLKs) would be associated with endometrial cancer susceptibility and/or prognosis. In the first part of this study, optimisation of the genotyping techniques was performed. Results from previously published endometrial cancer genetic association studies were attempted to be validated in a large, multicentre replication set (maximum cases n = 2,888, controls n = 4,483, 3 studies). The rs11224561 progesterone receptor SNP (PGR, A/G) was observed to be associated with increased endometrial cancer risk (per A allele OR 1.31, 95% CI 1.12-1.53; p-trend = 0.001), a result which was initially reported among a Chinese sample set. Previously reported associations for the remaining 8 SNPs investigated for this section of the PhD study were not confirmed, thereby reinforcing the importance of validation of genetic association studies. To examine the effect of SNPs from the MMP and KLK families on endometrial cancer risk, we selected the most significantly associated MMP and KLK SNPs from genome-wide association study analysis (GWAS) to be genotyped in the GWAS replication set (cases n = 4,725, controls n = 9,803, 13 studies). The significance of the MMP24 rs932562 SNP was unchanged after incorporation of the stage 2 samples (Stage 1 per allele OR 1.18, p = 0.002; Combined Stage 1 and 2 OR 1.09, p = 0.002). The rs10426 SNP, located 3' to KLK10 was predicted by bioinformatic analysis to effect miRNA binding. This SNP was observed in the GWAS stage 1 result to exhibit a recessive effect on endometrial cancer risk, a result which was not validated in the stage 2 sample set (Stage 1 OR 1.44, p = 0.007; Combined Stage 1 and 2 OR 1.14, p = 0.08). Investigation of the regions imputed surrounding the MMP, TIMP and KLK genes did not reveal any significant targets for further analysis. Analysis of the case data from the endometrial cancer GWAS to identify genetic variation associated with cancer grade did not reveal SNPs from the MMP, TIMP or KLK genes to be statistically significant. However, the representation of SNPs from the MMP, TIMP and KLK families by the GWAS genotyping platform used in this PhD project was examined and observed to be very low, with the genetic variation of four genes (MMP23A, MMP23B, MMP28 and TIMP1) not captured at all by this technique. This suggests that comprehensive candidate gene association studies will be required to assess the role of SNPs from these genes with endometrial cancer risk and prognosis. Meta-analysis of gene expression microarray datasets curated as part of this PhD study identified a number of MMP, TIMP and KLK genes to display differential expression by endometrial cancer status (MMP2, MMP10, MMP11, MMP13, MMP19, MMP25 and KLK1) and histology (MMP2, MMP11, MMP12, MMP26, MMP28, TIMP2, TIMP3, KLK6, KLK7, KLK11 and KLK12). In light of these findings these genes should be prioritised for future targeted genetic association studies. Two SNPs located 43.5 Mb apart on chromosome 15 were observed from the GWAS analysis to be associated with increased endometrial cancer grade, results that were validated in silico in two independent datasets. One of these SNPs, rs8035725 is located in the 5' untranslated region of a MYC promoter binding protein DENND4A (Stage 1 OR 1.15, p = 9.85 x 10P -5 P, combined Stage 1 and in silico validation OR 1.13, p = 5.24 x 10P -6 P). This SNP has previously been reported to alter the expression of PTPLAD1, a gene involved in the synthesis of very long fatty acid chains and in the Rac1 signaling pathway. Meta-analysis of gene expression microarray data found PTPLAD1 to display increased expression in the aggressive non-endometrioid histology compared with endometrioid endometrial cancer, suggesting that the causal SNP underlying the observed genetic association may influence expression of this gene. Neither rs8035725 nor significant SNPs identified by imputation were predicted bioinformatically to affect transcription factor binding sites, indicating that further studies are required to assess their potential effect on other regulatory elements. The other grade- associated SNP, rs6606792, is located upstream of an inferred pseudogene, ELMO2P1 (Stage 1 OR 1.12, p = 5 x 10P -5 P; combined Stage 1 and in silico validation OR 1.09, p = 3.56 x 10P -5 P). Imputation of the ±1 Mb region surrounding this SNP revealed a cluster of significantly associated variants which are predicted to abolish various transcription factor binding sites, and would be expected to decrease gene expression. ELMO2P1 was not included on the microarray platforms collected for this PhD, and so its expression could not be investigated. However, the high sequence homology of ELMO2P1 with ELMO2, a gene important to cell motility, indicates that ELMO2 could be the parent gene for ELMO2P1 and as such, ELMO2P1 could function to regulate the expression of ELMO2. Increased expression of ELMO2 was seen to be associated with increasing endometrial cancer grade, as well as with aggressive endometrial cancer histological subtypes by microarray meta-analysis. Thus, it is hypothesised that SNPs in linkage disequilibrium with rs6606792 decrease the transcription of ELMO2P1, reducing the regulatory effect of ELMO2P1 on ELMO2 expression. Consequently, ELMO2 expression is increased, cell motility is enhanced leading to an aggressive endometrial cancer phenotype. In summary, these findings have identified several areas of research for further study. The results presented in this thesis provide evidence that a SNP in PGR is associated with risk of developing endometrial cancer. This PhD study also reports two independent loci on chromosome 15 to be associated with increased endometrial cancer grade, and furthermore, genes associated with these SNPs to be differentially expressed according in aggressive subtypes and/or by grade. The studies reported in this thesis support the need for comprehensive SNP association studies on prioritised MMP, TIMP and KLK genes in large sample sets. Until these studies are performed, the role of MMP, TIMP and KLK genetic variation remains unclear. Overall, this PhD study has contributed to the understanding of genetic variation involvement in endometrial cancer susceptibility and prognosis. Importantly, the genetic regions highlighted in this study could lead to the identification of novel gene targets to better understand the biology of endometrial cancer and also aid in the development of therapeutics directed at treating this disease.
Resumo:
As of June 2009, 361 genome-wide association studies (GWAS) had been referenced by the HuGE database. GWAS require DNA from many thousands of individuals, relying on suitable DNA collections. We recently performed a multiple sclerosis (MS) GWAS where a substantial component of the cases (24%) had DNA derived from saliva. Genotyping was done on the Illumina genotyping platform using the Infinium Hap370CNV DUO microarray. Additionally, we genotyped 10 individuals in duplicate using both saliva- and blood-derived DNA. The performance of blood- versus saliva-derived DNA was compared using genotyping call rate, which reflects both the quantity and quality of genotyping per sample and the “GCScore,” an Illumina genotyping quality score, which is a measure of DNA quality. We also compared genotype calls and GCScores for the 10 sample pairs. Call rates were assessed for each sample individually. For the GWAS samples, we compared data according to source of DNA and center of origin. We observed high concordance in genotyping quality and quantity between the paired samples and minimal loss of quality and quantity of DNA in the saliva samples in the large GWAS sample, with the blood samples showing greater variation between centers of origin. This large data set highlights the usefulness of saliva DNA for genotyping, especially in high-density single-nucleotide polymorphism microarray studies such as GWAS.
Resumo:
Despite of significant contributions of urban road transport to global economy and society, it is one of the largest sources of local and global emission impact. In order to address the environmental concerns of urban road transport it is imperative to achieve a holistic understanding of contributory factors causing emissions which requires a complete look onto its whole life cycle. Previous studies were mainly based on segmental views which mostly studied environmental impacts of individual transport modes and very few considered impacts other than operational phase. This study develops an integrated life cycle inventory model for urban road transport emissions from a holistic modal perspective. Singapore case was used to demonstrate the model. Results show that total life cycle greenhouse gas emission from Singapore’s road transport sector is 7.8 million tons per year. The total amount of criteria air pollutants are also estimated in this study.
Resumo:
Background: The randomised phase 3 First-Line Erbitux in Lung Cancer (FLEX) study showed that the addition of cetuximab to cisplatin and vinorelbine significantly improved overall survival compared with chemotherapy alone in the first-line treatment of advanced non-small-cell lung cancer (NSCLC). The main cetuximab-related side-effect was acne-like rash. Here, we assessed the association of this acne-like rash with clinical benefit. Methods: We did a subgroup analysis of patients in the FLEX study, which enrolled patients with advanced NSCLC whose tumours expressed epidermal growth factor receptor. Our landmark analysis assessed if the development of acne-like rash in the first 21 days of treatment (first-cycle rash) was associated with clinical outcome, on the basis of patients in the intention-to-treat population alive on day 21. The FLEX study is registered with ClinicalTrials.gov, number NCT00148798. Findings: 518 patients in the chemotherapy plus cetuximab group-290 of whom had first-cycle rash-and 540 patients in the chemotherapy alone group were alive on day 21. Patients in the chemotherapy plus cetuximab group with first-cycle rash had significantly prolonged overall survival compared with patients in the same treatment group without first-cycle rash (median 15·0 months [95% CI 12·8-16·4] vs 8·8 months [7·6-11·1]; hazard ratio [HR] 0·631 [0·515-0·774]; p<0·0001). Corresponding significant associations were also noted for progression-free survival (median 5·4 months [5·2-5·7] vs 4·3 months [4·1-5·3]; HR 0·741 [0·607-0·905]; p=0·0031) and response (rate 44·8% [39·0-50·8] vs 32·0% [26·0-38·5]; odds ratio 1·703 [1·186-2·448]; p=0·0039). Overall survival for patients without first-cycle rash was similar to that of patients that received chemotherapy alone (median 8·8 months [7·6-11·1] vs 10·3 months [9·6-11·3]; HR 1·085 [0·910-1·293]; p=0·36). The significant overall survival benefit for patients with first-cycle rash versus without was seen in all histology subgroups: adenocarcinoma (median 16·9 months, [14·1-20·6] vs 9·3 months [7·7-13·2]; HR 0·614 [0·453-0·832]; p=0·0015), squamous-cell carcinoma (median 13·2 months [10·6-16·0] vs 8·1 months [6·7-12·6]; HR 0·659 [0·472-0·921]; p=0·014), and carcinomas of other histology (median 12·6 months [9·2-16·4] vs 6·9 months [5·2-11·0]; HR 0·616 [0·392-0·966]; p=0·033). Interpretation: First-cycle rash was associated with a better outcome in patients with advanced NSCLC who received cisplatin and vinorelbine plus cetuximab as a first-line treatment. First-cycle rash might be a surrogate clinical marker that could be used to tailor cetuximab treatment for advanced NSCLC to those patients who would be most likely to derive a significant benefit. Funding: Merck KGaA. © 2011 Elsevier Ltd.
Resumo:
Purpose: PTK787/ZK 222584 (PTK/ZK), an orally active inhibitor of vascular endothelial growth factor (VEGF) receptor tyrosine kinases, inhibits VEGF-mediated angiogenesis. The pharmacodynamic effects of PTK/ZK were evaluated by assessing changes in contrast-enhancement parameters of metastatic liver lesions using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in patients with advanced colorectal cancer treated in two ongoing, dose-escalating phase I studies. Patients and Methods: Twenty-six patients had DCE-MRI performed at baseline, day 2, and at the end of each 28-day cycle. Doses of oral PTK/ZK ranged from 50 to 2000 mg once daily. Tumor permeability and vascularity were assessed by calculating the bidirectional transfer constant (Ki). The percentage of baseline Ki (% of baseline Ki) at each time point was compared with pharmacokinetic and clinical end points. Results: A significant negative correlation exists between the % of baseline Ki and increase in PTK/ZK oral dose and plasma levels (P = .01 for oral dose; P = .0001 for area under the plasma concentration curve at day 2). Patients with a best response of stable disease had a significantly greater reduction in Ki at both day 2 and at the end of cycle 1 compared with progressors (mean difference in % of baseline Ki, 47%, P = .004%; and 51%, P = .006; respectively). The difference in % of baseline Ki remained statistically significant after adjusting for baseline WHO performance status. Conclusion: These findings should help to define a biologically active dose of PTK/ZK. These results suggest that DCE-MRI may be a useful biomarker for defining the pharmacological response and dose of angiogenesis inhibitiors, such as PTK/ZK, for further clinical development. © 2003 by American Society of Clinical Oncology.
Resumo:
RNA interference (RNAi) is widely used to silence genes in plants and animals. It operates through the degradation of target mRNA by endonuclease complexes guided by approximately 21 nucleotide (nt) short interfering RNAs (siRNAs). A similar process regulates the expression of some developmental genes through approximately 21 nt microRNAs. Plants have four types of Dicer-like (DCL) enzyme, each producing small RNAs with different functions. Here, we show that DCL2, DCL3 and DCL4 in Arabidopsis process both replicating viral RNAs and RNAi-inducing hairpin RNAs (hpRNAs) into 22-, 24- and 21 nt siRNAs, respectively, and that loss of both DCL2 and DCL4 activities is required to negate RNAi and to release the plant's repression of viral replication. We also show that hpRNAs, similar to viral infection, can engender long-distance silencing signals and that hpRNA-induced silencing is suppressed by the expression of a virus-derived suppressor protein. These findings indicate that hpRNA-mediated RNAi in plants operates through the viral defence pathway.
Resumo:
The complete nucleotide sequence of Subterranean clover mottle virus (SCMoV) genomic RNA has been determined. The SCMoV genome is 4,258 nucleotides in length. It shares most nucleotide and amino acid sequence identity with the genome of Lucerne transient streak virus (LTSV). SCMoV RNA encodes four overlapping open reading frames and has a genome organisation similar to that of Cocksfoot mottle virus (CfMV). ORF1 and ORF4 are predicted to encode single proteins. ORF2 is predicted to encode two proteins that are derived from a -1 translational frameshift between two overlapping reading frames (ORF2a and ORF2b). A search of amino acid databases did not find a significant match for ORF1 and the function of this protein remains unclear. ORF2a contains a motif typical of chymotrypsin-like serine proteases and ORF2b has motifs characteristically present in positive-stranded RNA-dependent RNA polymerases. ORF4 is likely to be expressed from a subgenomic RNA and encodes the viral coat protein. The ORF2a/ORF2b overlapping gene expression strategy used by SCMoV and CfMV is similar to that of the poleroviruses and differ from that of other published sobemoviruses. These results suggest that the sobemoviruses could now be divided into two distinct subgroups based on those that express the RNA-dependent RNA polymerase from a single, in-frame polyprotein, and those that express it via a -1 translational frameshifting mechanism.
Resumo:
Background: Diabetic peripheral neuropathy is an important cause of foot ulceration and limb loss. This systematic review and meta-analysis investigated the effect of diabetic peripheral neuropathy on gait, dynamic electromyography and dynamic plantar pressures. Methods: Electronic databases were searched systematically for articles reporting the effect of diabetic peripheral neuropathy on gait, dynamic electromyography and plantar pressures. Searches were restricted to articles published between January 2000 and April 2012. Outcome measures assessed included spatiotemporal parameters, lower limb kinematics, kinetics, muscle activation and plantar pressure. Meta-analyses were carried out on all outcome measures reported by ≥3 studies. Findings: Sixteen studies were included consisting of 382 neuropathy participants, 216 diabetes controls without neuropathy and 207 healthy controls. Meta-analysis was performed on 11 gait variables. A high level of heterogeneity was noted between studies. Meta-analysis results suggested a longer stance time and moderately higher plantar pressures in diabetic peripheral neuropathy patients at the rearfoot, midfoot and forefoot compared to controls. Systematic review of studies suggested potential differences in the biomechanical characteristics (kinematics, kinetics, EMG) of diabetic neuropathy patients. However these findings were inconsistent and limited by small sample sizes.; Interpretation: Current evidence suggests that patients with diabetic peripheral neuropathy have elevated plantar pressures and occupy a longer duration of time in the stance-phase during gait. Firm conclusions are hampered by the heterogeneity and small sample sizes of available studies. Interpretation: Current evidence suggests that patients with diabetic peripheral neuropathy have elevated plantar pressures and occupy a longer duration of time in the stance-phase during gait. Firm conclusions are hampered by the heterogeneity and small sample sizes of available studies.
Resumo:
GPV is a Chinese serotype isolate of barley yellow dwarf virus (BYDV) that has no reaction with antiserum of MAV, PAV, SGV, RPV and RMV The sequence of the coat protein (CP) of GPV isolate of BYDV was identified and its amino acid sequence was deduced. The coding region for the putative GPV CP is 603 bases nucleotides and encodes a Mr 22 218 (22 ku) protein. The same as MAV, PAV and RPV, GPV contained a second ORF within the coat protein coding region. This protein of 17 024 Mr (17 ku) is thought to correspond to the Virion protein genome linked (Vpg). Sequence comparisons of the CP coding region between the GPV isolate of BYDV and other isolates of BYDV have been done. The nucleotide and amino acid sequence homology of GPV has a greater identity to the sequence of RPV than those of PAV and MAV. The GPV CP sequence stored 83.7% of nucleotide similarity and 77.5% of deduced amino acid similarity, whereas that of the PAV and MAV shared 56.9%, 53.2% and 44.1%, 43.8% respectively. According to BYDV-GPV CP sequence, two primers were designed. The cDNA of CP was produced by RT-PCR. Full-length cDNA of CP was inserted into plasmid to construct expression plasmids named pPPI1, pPPI2 and pPPI5 based on different promoters. The recombinant plasmids were identified by using α-32P-dATP labelled CP probe, α-32P-ATP labelled GPV RNA probe and sequencing to confirm real GPV CP gene cDNA in plasmids.
Resumo:
The genomes of an Australian and a Canadian isolate of potato leafroll virus have been cloned and sequenced. The sequences of both isolates are similar (about 93%), but the Canadian isolate (PLRV-C) is more closely related (about 98% identity) to a Scottish (PLRV-S) and a Dutch isolate (PLRV-N) than to the Australian isolate (PLRV-A). The 5'-terminal 18 nucleotide residues of PLRV-C, PLRV-A, PLRV-N and beet western yellows virus have 17 residues in common. In contrast, PLRV-S shows no obvious similarity in this region. PLRV-A and PLRV-C genomic sequences have localized regions of marked diversity, in particular a 600 nucleotide residue sequence in the polymerase gene. These data provide a world-wide perspective on the molecular biology of PLRV strains and their comparison with other luteoviruses and related RNA plant viruses suggests that there are two major subgroups in the plant luteoviruses.