145 resultados para OPTIMAL CLONING
Resumo:
Operational modal analysis (OMA) is prevalent in modal identifi cation of civil structures. It asks for response measurements of the underlying structure under ambient loads. A valid OMA method requires the excitation be white noise in time and space. Although there are numerous applications of OMA in the literature, few have investigated the statistical distribution of a measurement and the infl uence of such randomness to modal identifi cation. This research has attempted modifi ed kurtosis to evaluate the statistical distribution of raw measurement data. In addition, a windowing strategy employing this index has been proposed to select quality datasets. In order to demonstrate how the data selection strategy works, the ambient vibration measurements of a laboratory bridge model and a real cable-stayed bridge have been respectively considered. The analysis incorporated with frequency domain decomposition (FDD) as the target OMA approach for modal identifi cation. The modal identifi cation results using the data segments with different randomness have been compared. The discrepancy in FDD spectra of the results indicates that, in order to fulfi l the assumption of an OMA method, special care shall be taken in processing a long vibration measurement data. The proposed data selection strategy is easy-to-apply and verifi ed effective in modal analysis.
Resumo:
The use of immobilised TiO2 for the purification of polluted water streams introduces the necessity to evaluate the effect of mechanisms such as the transport of pollutants from the bulk of the liquid to the catalyst surface and the transport phenomena inside the porous film. Experimental results of the effects of film thickness on the observed reaction rate for both liquid-side and support-side illumination are here compared with the predictions of a one-dimensional mathematical model of the porous photocatalytic slab. Good agreement was observed between the experimentally obtained photodegradation of phenol and its by-products, and the corresponding model predictions. The results have confirmed that an optimal catalyst thickness exists and, for the films employed here, is 5 μm. Furthermore, the modelling results have highlighted the fact that porosity, together with the intrinsic reaction kinetics are the parameters controlling the photocatalytic activity of the film. The former by influencing transport phenomena and light absorption characteristics, the latter by naturally dictating the rate of reaction.
Resumo:
This paper proposes a new iterative method to achieve an optimally fitting plate for preoperative planning purposes. The proposed method involves integration of four commercially available software tools, Matlab, Rapidform2006, SolidWorks and ANSYS, each performing specific tasks to obtain a plate shape that fits optimally for an individual tibia and is mechanically safe. A typical challenge when crossing multiple platforms is to ensure correct data transfer. We present an example of the implementation of the proposed method to demonstrate successful data transfer between the four platforms and the feasibility of the method.
Resumo:
A library containing approximately 40,000 small RNA sequences was constructed for Brassica napus. Analysis of 3025 sequences obtained from this library resulted in the identification of 11 conserved miRNA families, which were validated by secondary structure prediction using surrounding sequences in the Brassica genome. Two 21 nt small RNA sequences reside within the arm of a pre-miRNA like stem-loop structure, making them likely candidates for novel non-conserved miRNAs in B. napus. Most of the conserved miRNAs were expressed at similar levels in a F1 hybrid B. napus line and its four double haploid progeny that showed marked variations in phenotypes, but many were differentially expressed between B. napus and Arabidopsis. The miR169 family was expressed at high levels in young leaves and stems, but was undetectable in roots and mature leaves, suggesting that miR169 expression is developmentally regulated in B. napus. © 2007 Federation of European Biochemical Societies.
Resumo:
The selection of optimal camera configurations (camera locations, orientations, etc.) for multi-camera networks remains an unsolved problem. Previous approaches largely focus on proposing various objective functions to achieve different tasks. Most of them, however, do not generalize well to large scale networks. To tackle this, we propose a statistical framework of the problem as well as propose a trans-dimensional simulated annealing algorithm to effectively deal with it. We compare our approach with a state-of-the-art method based on binary integer programming (BIP) and show that our approach offers similar performance on small scale problems. However, we also demonstrate the capability of our approach in dealing with large scale problems and show that our approach produces better results than two alternative heuristics designed to deal with the scalability issue of BIP. Last, we show the versatility of our approach using a number of specific scenarios.
Resumo:
Using our porcine model of deep dermal partial thickness burn injury, various cooling techniques (15 degrees C running water, 2 degrees C running water, ice) of first aid were applied for 20 minutes compared with a control (ambient temperature). The subdermal temperatures were monitored during the treatment and wounds observed and photographed weekly for 6 weeks, observing reepithelialization, wound surface area and cosmetic appearance. Tissue histology and scar tensile strength were examined 6 weeks after burn. The 2 degrees C and ice treatments decreased the subdermal temperature the fastest and lowest, however, generally the 15 and 2 degrees C treated wounds had better outcomes in terms of reepithelialization, scar histology, and scar appearance. These findings provide evidence to support the current first aid guidelines of cold tap water (approximately 15 degrees C) for 20 minutes as being beneficial in helping to heal the burn wound. Colder water at 2 degrees C is also beneficial. Ice should not be used.
Resumo:
Using our porcine model of deep dermal partial thickness burn injury, various durations (10min, 20min, 30min or 1h) and delays (immediate, 10min, 1h, 3h) of 15 degrees C running water first aid were applied to burns and compared to untreated controls. The subdermal temperatures were monitored during the treatment and wounds observed weekly for 6 weeks, for re-epithelialisation, wound surface area and cosmetic appearance. At 6 weeks after the burn, tissue biopsies were taken of the scar for histological analysis. Results showed that immediate application of cold running water for 20min duration is associated with an improvement in re-epithelialisation over the first 2 weeks post-burn and decreased scar tissue at 6 weeks. First aid application of cold water for as little as 10min duration or up to 1h delay still provides benefit.
Resumo:
This paper presents an optimisation algorithm to maximize the loadability of single wire earth return (SWER) by minimizing the cost of batteries and regulators considering the voltage constraints and thermal limits. This algorithm, that finds the optimum location of batteries and regulators, uses hybrid discrete particle swarm optimization and mutation (DPSO + Mutation). The simulation results on realistic highly loaded SWER network show the effectiveness of using battery to improve the loadability of SWER network in a cost-effective way. In this case, while only 61% of peak load can be supplied without violating the constraints by existing network, the loadability of the network is increased to peak load by utilizing two battery sites which are located optimally. That is, in a SWER system like the studied one, each installed kVA of batteries, optimally located, supports a loadability increase as 2 kVA.
Resumo:
This paper describes a novel optimum path planning strategy for long duration AUV operations in environments with time-varying ocean currents. These currents can exceed the maximum achievable speed of the AUV, as well as temporally expose obstacles. In contrast to most other path planning strategies, paths have to be defined in time as well as space. The solution described here exploits ocean currents to achieve mission goals with minimal energy expenditure, or a tradeoff between mission time and required energy. The proposed algorithm uses a parallel swarm search as a means to reduce the susceptibility to large local minima on the complex cost surface. The performance of the optimisation algorithms is evaluated in simulation and experimentally with the Starbug AUV using a validated ocean model of Brisbane’s Moreton Bay.
Resumo:
Distributed generation (DG) resources are commonly used in the electric systems to obtain minimum line losses, as one of the benefits of DG, in radial distribution systems. Studies have shown the importance of appropriate selection of location and size of DGs. This paper proposes an analytical method for solving optimal distributed generation placement (ODGP) problem to minimize line losses in radial distribution systems using loss sensitivity factor (LSF) based on bus-injection to branch-current (BIBC) matrix. The proposed method is formulated and tested on 12 and 34 bus radial distribution systems. The classical grid search algorithm based on successive load flows is employed to validate the results. The main advantages of the proposed method as compared with the other conventional methods are the robustness and no need to calculate and invert large admittance or Jacobian matrices. Therefore, the simulation time and the amount of computer memory, required for processing data especially for the large systems, decreases.
Resumo:
In this paper, load profile and operational goal are used to find optimal sizing of combined PV-energy storage for a future grid-connected residential building. As part of this approach, five operational goals are introduced and the annual cost for each operation goal has been assessed. Finally, the optimal sizing for combined PV-energy storage has been determined, using direct search method. In addition, sensitivity of the annual cost to different parameters has been analyzed.
Resumo:
L-Amino acid oxidases (LAAOs) are useful catalysts for the deracemisation of racemic amino acid sub-strates when combined with abiotic reductants. The gene nadB encoding the L-aspartate amino acid oxidase from Pseudomonas putida (PpLASPO) has been cloned and expressed in E. coli. The purified PpLASPO enzyme displayed a K M for l-aspartic acid of 2.26 mM and a k cat = 10.6 s −1 , with lower activity also displayed towards L-asparagine, for which pronounced substrate inhibition was also observed. The pH optimum of the enzyme was recorded at pH 7.4. The enzyme was stable for 60 min at up to 40 • C, but rapid losses in activity were observed at 50 • C. A mutational analysis of the enzyme, based on its sequence homology with the LASPO from E. coli of known structure, appeared to confirm roles in substrate binding or catalysis for residues His244, His351, Arg386 and Arg290 and also for Thr259 and Gln242. The high activity of the enzyme, and its promiscuous acceptance of both L-asparagine and L-glutamate as substrates, if with low activity, suggests that PpLASPO may provide a good model enzyme for evolution studies towards AAOs of altered or improved properties in the future.
Resumo:
In Chapters 1 through 9 of the book (with the exception of a brief discussion on observers and integral action in Section 5.5 of Chapter 5) we considered constrained optimal control problems for systems without uncertainty, that is, with no unmodelled dynamics or disturbances, and where the full state was available for measurement. More realistically, however, it is necessary to consider control problems for systems with uncertainty. This chapter addresses some of the issues that arise in this situation. As in Chapter 9, we adopt a stochastic description of uncertainty, which associates probability distributions to the uncertain elements, that is, disturbances and initial conditions. (See Section 12.6 for references to alternative approaches to model uncertainty.) When incomplete state information exists, a popular observer-based control strategy in the presence of stochastic disturbances is to use the certainty equivalence [CE] principle, introduced in Section 5.5 of Chapter 5 for deterministic systems. In the stochastic framework, CE consists of estimating the state and then using these estimates as if they were the true state in the control law that results if the problem were formulated as a deterministic problem (that is, without uncertainty). This strategy is motivated by the unconstrained problem with a quadratic objective function, for which CE is indeed the optimal solution (˚Astr¨om 1970, Bertsekas 1976). One of the aims of this chapter is to explore the issues that arise from the use of CE in RHC in the presence of constraints. We then turn to the obvious question about the optimality of the CE principle. We show that CE is, indeed, not optimal in general. We also analyse the possibility of obtaining truly optimal solutions for single input linear systems with input constraints and uncertainty related to output feedback and stochastic disturbances.We first find the optimal solution for the case of horizon N = 1, and then we indicate the complications that arise in the case of horizon N = 2. Our conclusion is that, for the case of linear constrained systems, the extra effort involved in the optimal feedback policy is probably not justified in practice. Indeed, we show by example that CE can give near optimal performance. We thus advocate this approach in real applications.
Resumo:
We address the problem of finite horizon optimal control of discrete-time linear systems with input constraints and uncertainty. The uncertainty for the problem analysed is related to incomplete state information (output feedback) and stochastic disturbances. We analyse the complexities associated with finding optimal solutions. We also consider two suboptimal strategies that could be employed for larger optimization horizons.
Resumo:
This paper addresses the problem of determining optimal designs for biological process models with intractable likelihoods, with the goal of parameter inference. The Bayesian approach is to choose a design that maximises the mean of a utility, and the utility is a function of the posterior distribution. Therefore, its estimation requires likelihood evaluations. However, many problems in experimental design involve models with intractable likelihoods, that is, likelihoods that are neither analytic nor can be computed in a reasonable amount of time. We propose a novel solution using indirect inference (II), a well established method in the literature, and the Markov chain Monte Carlo (MCMC) algorithm of Müller et al. (2004). Indirect inference employs an auxiliary model with a tractable likelihood in conjunction with the generative model, the assumed true model of interest, which has an intractable likelihood. Our approach is to estimate a map between the parameters of the generative and auxiliary models, using simulations from the generative model. An II posterior distribution is formed to expedite utility estimation. We also present a modification to the utility that allows the Müller algorithm to sample from a substantially sharpened utility surface, with little computational effort. Unlike competing methods, the II approach can handle complex design problems for models with intractable likelihoods on a continuous design space, with possible extension to many observations. The methodology is demonstrated using two stochastic models; a simple tractable death process used to validate the approach, and a motivating stochastic model for the population evolution of macroparasites.