162 resultados para Natural language processing systems
Resumo:
For several reasons, the Fourier phase domain is less favored than the magnitude domain in signal processing and modeling of speech. To correctly analyze the phase, several factors must be considered and compensated, including the effect of the step size, windowing function and other processing parameters. Building on a review of these factors, this paper investigates a spectral representation based on the Instantaneous Frequency Deviation, but in which the step size between processing frames is used in calculating phase changes, rather than the traditional single sample interval. Reflecting these longer intervals, the term delta-phase spectrum is used to distinguish this from instantaneous derivatives. Experiments show that mel-frequency cepstral coefficients features derived from the delta-phase spectrum (termed Mel-Frequency delta-phase features) can produce broadly similar performance to equivalent magnitude domain features for both voice activity detection and speaker recognition tasks. Further, it is shown that the fusion of the magnitude and phase representations yields performance benefits over either in isolation.
Resumo:
This work proposes to improve spoken term detection (STD) accuracy by optimising the Figure of Merit (FOM). In this article, the index takes the form of phonetic posterior-feature matrix. Accuracy is improved by formulating STD as a discriminative training problem and directly optimising the FOM, through its use as an objective function to train a transformation of the index. The outcome of indexing is then a matrix of enhanced posterior-features that are directly tailored for the STD task. The technique is shown to improve the FOM by up to 13% on held-out data. Additional analysis explores the effect of the technique on phone recognition accuracy, examines the actual values of the learned transform, and demonstrates that using an extended training data set results in further improvement in the FOM.
Resumo:
Most web service discovery systems use keyword-based search algorithms and, although partially successful, sometimes fail to satisfy some users information needs. This has given rise to several semantics-based approaches that look to go beyond simple attribute matching and try to capture the semantics of services. However, the results reported in the literature vary and in many cases are worse than the results obtained by keyword-based systems. We believe the accuracy of the mechanisms used to extract tokens from the non-natural language sections of WSDL files directly affects the performance of these techniques, because some of them can be more sensitive to noise. In this paper three existing tokenization algorithms are evaluated and a new algorithm that outperforms all the algorithms found in the literature is introduced.
Resumo:
Log-linear and maximum-margin models are two commonly-used methods in supervised machine learning, and are frequently used in structured prediction problems. Efficient learning of parameters in these models is therefore an important problem, and becomes a key factor when learning from very large data sets. This paper describes exponentiated gradient (EG) algorithms for training such models, where EG updates are applied to the convex dual of either the log-linear or max-margin objective function; the dual in both the log-linear and max-margin cases corresponds to minimizing a convex function with simplex constraints. We study both batch and online variants of the algorithm, and provide rates of convergence for both cases. In the max-margin case, O(1/ε) EG updates are required to reach a given accuracy ε in the dual; in contrast, for log-linear models only O(log(1/ε)) updates are required. For both the max-margin and log-linear cases, our bounds suggest that the online EG algorithm requires a factor of n less computation to reach a desired accuracy than the batch EG algorithm, where n is the number of training examples. Our experiments confirm that the online algorithms are much faster than the batch algorithms in practice. We describe how the EG updates factor in a convenient way for structured prediction problems, allowing the algorithms to be efficiently applied to problems such as sequence learning or natural language parsing. We perform extensive evaluation of the algorithms, comparing them to L-BFGS and stochastic gradient descent for log-linear models, and to SVM-Struct for max-margin models. The algorithms are applied to a multi-class problem as well as to a more complex large-scale parsing task. In all these settings, the EG algorithms presented here outperform the other methods.
Resumo:
This paper develops a framework for classifying term dependencies in query expansion with respect to the role terms play in structural linguistic associations. The framework is used to classify and compare the query expansion terms produced by the unigram and positional relevance models. As the unigram relevance model does not explicitly model term dependencies in its estimation process it is often thought to ignore dependencies that exist between words in natural language. The framework presented in this paper is underpinned by two types of linguistic association, namely syntagmatic and paradigmatic associations. It was found that syntagmatic associations were a more prevalent form of linguistic association used in query expansion. Paradoxically, it was the unigram model that exhibited this association more than the positional relevance model. This surprising finding has two potential implications for information retrieval models: (1) if linguistic associations underpin query expansion, then a probabilistic term dependence assumption based on position is inadequate for capturing them; (2) the unigram relevance model captures more term dependency information than its underlying theoretical model suggests, so its normative position as a baseline that ignores term dependencies should perhaps be reviewed.
Resumo:
Many existing information retrieval models do not explicitly take into account in- formation about word associations. Our approach makes use of rst and second order relationships found in natural language, known as syntagmatic and paradigmatic associ- ations, respectively. This is achieved by using a formal model of word meaning within the query expansion process. On ad hoc retrieval, our approach achieves statistically sig- ni cant improvements in MAP (0.158) and P@20 (0.396) over our baseline model. The ERR@20 and nDCG@20 of our system was 0.249 and 0.192 respectively. Our results and discussion suggest that information about both syntagamtic and paradigmatic associa- tions can assist with improving retrieval eectiveness on ad hoc retrieval.
Resumo:
Many existing information retrieval models do not explicitly take into account in- formation about word associations. Our approach makes use of rst and second order relationships found in natural language, known as syntagmatic and paradigmatic associ- ations, respectively. This is achieved by using a formal model of word meaning within the query expansion process. On ad hoc retrieval, our approach achieves statistically sig- ni cant improvements in MAP (0.158) and P@20 (0.396) over our baseline model. The ERR@20 and nDCG@20 of our system was 0.249 and 0.192 respectively. Our results and discussion suggest that information about both syntagamtic and paradigmatic associa- tions can assist with improving retrieval eectiveness on ad hoc retrieval.
Resumo:
This project was a step forward in developing and evaluating a novel, mathematical model that can deduce the meaning of words based on their use in language. This model can be applied to a wide range of natural language applications, including the information seeking process most of us undertake on a daily basis.
Resumo:
The INEX workshop is concerned with evaluating the effectiveness of XML retrieval systems. In 2004 a natural language query task was added to the INEX Ad hoc track. Standard INEX Ad hoc topic titles are specified in NEXI -- a simplified and restricted subset of XPath, with a similar feel, and yet with a distinct IR flavour and interpretation. The syntax of NEXI is rigid and it imposes some limitations on the kind of information need that it can faithfully capture. At INEX 2004 the NLP question to be answered was simple -- is it practical to use a natural language query that is the equivalent of the formal NEXI title? The results of this experiment are reported and some information on the future direction of the NLP task is presented.
Resumo:
Process models expressed in BPMN typically rely on a small subset of all available symbols. In our 2008 study, we examined the composition of these subsets, and found that the distribution of BPMN symbols in practice closely resembles the frequency distribution of words in natural language. We offered some suggestions based on our findings, how to make the use of BPMN more manageable and also outlined ideas for further development of BPMN. Since this paper was published it has provoked spirited debate in the BPM practitioner community, prompted the definition of a modeling standard in US government, and helped shape the next generation of the BPMN standard.
Resumo:
A user’s query is considered to be an imprecise description of their information need. Automatic query expansion is the process of reformulating the original query with the goal of improving retrieval effectiveness. Many successful query expansion techniques ignore information about the dependencies that exist between words in natural language. However, more recent approaches have demonstrated that by explicitly modeling associations between terms significant improvements in retrieval effectiveness can be achieved over those that ignore these dependencies. State-of-the-art dependency-based approaches have been shown to primarily model syntagmatic associations. Syntagmatic associations infer a likelihood that two terms co-occur more often than by chance. However, structural linguistics relies on both syntagmatic and paradigmatic associations to deduce the meaning of a word. Given the success of dependency-based approaches and the reliance on word meanings in the query formulation process, we argue that modeling both syntagmatic and paradigmatic information in the query expansion process will improve retrieval effectiveness. This article develops and evaluates a new query expansion technique that is based on a formal, corpus-based model of word meaning that models syntagmatic and paradigmatic associations. We demonstrate that when sufficient statistical information exists, as in the case of longer queries, including paradigmatic information alone provides significant improvements in retrieval effectiveness across a wide variety of data sets. More generally, when our new query expansion approach is applied to large-scale web retrieval it demonstrates significant improvements in retrieval effectiveness over a strong baseline system, based on a commercial search engine.
Resumo:
Many successful query expansion techniques ignore information about the term dependencies that exist within natural language. However, researchers have recently demonstrated that consistent and significant improvements in retrieval effectiveness can be achieved by explicitly modelling term dependencies within the query expansion process. This has created an increased interest in dependency-based models. State-of-the-art dependency-based approaches primarily model term associations known within structural linguistics as syntagmatic associations, which are formed when terms co-occur together more often than by chance. However, structural linguistics proposes that the meaning of a word is also dependent on its paradigmatic associations, which are formed between words that can substitute for each other without effecting the acceptability of a sentence. Given the reliance on word meanings when a user formulates their query, our approach takes the novel step of modelling both syntagmatic and paradigmatic associations within the query expansion process based on the (pseudo) relevant documents returned in web search. The results demonstrate that this approach can provide significant improvements in web re- trieval effectiveness when compared to a strong benchmark retrieval system.
Resumo:
Expert searchers engage with information as information brokers, researchers, reference librarians, information architects, faculty who teach advanced search, and in a variety of other information-intensive professions. Their experiences are characterized by a profound understanding of information concepts and skills and they have an agile ability to apply this knowledge to interacting with and having an impact on the information environment. This study explored the learning experiences of searchers to understand the acquisition of search expertise. The research question was: What can be learned about becoming an expert searcher from the learning experiences of proficient novice searchers and highly experienced searchers? The key objectives were: (1) to explore the existence of threshold concepts in search expertise; (2) to improve our understanding of how search expertise is acquired and how novice searchers, intent on becoming experts, can learn to search in more expertlike ways. The participant sample drew from two population groups: (1) highly experienced searchers with a minimum of 20 years of relevant professional experience, including LIS faculty who teach advanced search, information brokers, and search engine developers (11 subjects); and (2) MLIS students who had completed coursework in information retrieval and online searching and demonstrated exceptional ability (9 subjects). Using these two groups allowed a nuanced understanding of the experience of learning to search in expertlike ways, with data from those who search at a very high level as well as those who may be actively developing expertise. The study used semi-structured interviews, search tasks with think-aloud narratives, and talk-after protocols. Searches were screen-captured with simultaneous audio-recording of the think-aloud narrative. Data were coded and analyzed using NVivo9 and manually. Grounded theory allowed categories and themes to emerge from the data. Categories represented conceptual knowledge and attributes of expert searchers. In accord with grounded theory method, once theoretical saturation was achieved, during the final stage of analysis the data were viewed through lenses of existing theoretical frameworks. For this study, threshold concept theory (Meyer & Land, 2003) was used to explore which concepts might be threshold concepts. Threshold concepts have been used to explore transformative learning portals in subjects ranging from economics to mathematics. A threshold concept has five defining characteristics: transformative (causing a shift in perception), irreversible (unlikely to be forgotten), integrative (unifying separate concepts), troublesome (initially counter-intuitive), and may be bounded. Themes that emerged provided evidence of four concepts which had the characteristics of threshold concepts. These were: information environment: the total information environment is perceived and understood; information structures: content, index structures, and retrieval algorithms are understood; information vocabularies: fluency in search behaviors related to language, including natural language, controlled vocabulary, and finesse using proximity, truncation, and other language-based tools. The fourth threshold concept was concept fusion, the integration of the other three threshold concepts and further defined by three properties: visioning (anticipating next moves), being light on one's 'search feet' (dancing property), and profound ontological shift (identity as searcher). In addition to the threshold concepts, findings were reported that were not concept-based, including praxes and traits of expert searchers. A model of search expertise is proposed with the four threshold concepts at its core that also integrates the traits and praxes elicited from the study, attributes which are likewise long recognized in LIS research as present in professional searchers. The research provides a deeper understanding of the transformative learning experiences involved in the acquisition of search expertise. It adds to our understanding of search expertise in the context of today's information environment and has implications for teaching advanced search, for research more broadly within library and information science, and for methodologies used to explore threshold concepts.