201 resultados para Multi variate analysis
Resumo:
To detect and annotate the key events of live sports videos, we need to tackle the semantic gaps of audio-visual information. Previous work has successfully extracted semantic from the time-stamped web match reports, which are synchronized with the video contents. However, web and social media articles with no time-stamps have not been fully leveraged, despite they are increasingly used to complement the coverage of major sporting tournaments. This paper aims to address this limitation using a novel multimodal summarization framework that is based on sentiment analysis and players' popularity. It uses audiovisual contents, web articles, blogs, and commentators' speech to automatically annotate and visualize the key events and key players in a sports tournament coverage. The experimental results demonstrate that the automatically generated video summaries are aligned with the events identified from the official website match reports.
Resumo:
This research investigates home literacy education practices of Taiwanese families in Australia. As Taiwanese immigrants represent the largest ¡°Chinese Australian¡± subgroup to have settled in the state of Queensland, teachers in this state often face the challenges of cultural differences between Australian schools and Taiwanese homes. Extensive work by previous researchers suggests that understanding the cultural and linguistic differences that influence how an immigrant child views and interacts with his/her environment is a possible way to minimise the challenges. Cultural practices start from infancy and at home. Therefore, this study is focused on young children who are around the age of four to five. It is a study that examines the form of literacy education that is enacted and valued by Taiwanese parents in Australia. Specifically, this study analyses ¡°what literacy knowledge and skill is taught at home?¡±, ¡°how is it taught?¡± and ¡°why is it taught?¡± The study is framed in Pierre Bourdieu.s theory of social practice that defines literacy from a sociological perspective. The aim is to understand the practices through which literacy is taught in the Taiwanese homes. Practices of literacy education are culturally embedded. Accordingly, the study shows the culturally specialised ways of learning and knowing that are enacted in the study homes. The study entailed four case studies that draw on: observations and recording of the interactions between the study parent and child in their literacy events; interviews and dialogues with the parents involved; and a collection of photographs of the children.s linguistic resources and artefacts. The methodological arguments and design addressed the complexity of home literacy education where Taiwanese parents raise children in their own cultural ways while adapting to a new country in an immigrant context. In other words, the methodology not only involves cultural practices, but also involves change and continuity in home literacy practices. Bernstein.s theory of pedagogic discourse was used to undertake a detailed analysis of parents. selection and organisation of content for home literacy education, and the evaluative criteria they established for the selected literacy knowledge and skill. This analysis showed how parents selected and controlled the interactions in their child.s literacy learning. Bernstein.s theory of pedagogic discourse was used also to analyse change and continuity in home literacy practice, specifically, the concepts of ¡°classification¡± and ¡°framing¡±. The design of this study aimed to gain an understanding of parents. literacy teaching in an immigrant context. The study found that parents tended to value and enact traditional practices, yet most of the parents were also searching for innovative ideas for their adult-structured learning. Home literacy education of Taiwanese families in this study was found to be complex, multi-faceted and influenced in an ongoing way by external factors. Implications for educators and recommendations for future study are provided. The findings of this study offer early childhood teachers in Australia understandings that will help them build knowledge about home literacy education of Taiwanese Australian families.
Resumo:
Acoustic emission has been found effective in offering earlier fault detection and improving identification capabilities of faults. However, the sensors are inherently uncalibrated. This paper presents a source to sensor paths calibration technique which can lead to diagnosis of faults in a small size multi-cylinder diesel engine. Preliminary analysis of the acoustic emission (AE) signals is outlined, including time domain, time-frequency domain, and the root mean square (RMS) energy. The results reveal how the RMS energy of a source propagates to the adjacent sensors. The findings lead to allocate the source and estimate its inferences to the adjacent sensor, and finally help to diagnose the small size diesel engines by minimising the crosstalk from multiple cylinders.
Resumo:
This paper investigates the High Lift System (HLS) application of complex aerodynamic design problem using Particle Swarm Optimisation (PSO) coupled to Game strategies. Two types of optimization methods are used; the first method is a standard PSO based on Pareto dominance and the second method hybridises PSO with a well-known Nash Game strategies named Hybrid-PSO. These optimization techniques are coupled to a pre/post processor GiD providing unstructured meshes during the optimisation procedure and a transonic analysis software PUMI. The computational efficiency and quality design obtained by PSO and Hybrid-PSO are compared. The numerical results for the multi-objective HLS design optimisation clearly shows the benefits of hybridising a PSO with the Nash game and makes promising the above methodology for solving other more complex multi-physics optimisation problems in Aeronautics.
Resumo:
Gait recognition approaches continue to struggle with challenges including view-invariance, low-resolution data, robustness to unconstrained environments, and fluctuating gait patterns due to subjects carrying goods or wearing different clothes. Although computationally expensive, model based techniques offer promise over appearance based techniques for these challenges as they gather gait features and interpret gait dynamics in skeleton form. In this paper, we propose a fast 3D ellipsoidal-based gait recognition algorithm using a 3D voxel model derived from multi-view silhouette images. This approach directly solves the limitations of view dependency and self-occlusion in existing ellipse fitting model-based approaches. Voxel models are segmented into four components (left and right legs, above and below the knee), and ellipsoids are fitted to each region using eigenvalue decomposition. Features derived from the ellipsoid parameters are modeled using a Fourier representation to retain the temporal dynamic pattern for classification. We demonstrate the proposed approach using the CMU MoBo database and show that an improvement of 15-20% can be achieved over a 2D ellipse fitting baseline.
Resumo:
To sustain an ongoing rapid growth of video information, there is an emerging demand for a sophisticated content-based video indexing system. However, current video indexing solutions are still immature and lack of any standard. This doctoral consists of a research work based on an integrated multi-modal approach for sports video indexing and retrieval. By combining specific features extractable from multiple audio-visual modalities, generic structure and specific events can be detected and classified. During browsing and retrieval, users will benefit from the integration of high-level semantic and some descriptive mid-level features such as whistle and close-up view of player(s).
Resumo:
In public places, crowd size may be an indicator of congestion, delay, instability, or of abnormal events, such as a fight, riot or emergency. Crowd related information can also provide important business intelligence such as the distribution of people throughout spaces, throughput rates, and local densities. A major drawback of many crowd counting approaches is their reliance on large numbers of holistic features, training data requirements of hundreds or thousands of frames per camera, and that each camera must be trained separately. This makes deployment in large multi-camera environments such as shopping centres very costly and difficult. In this chapter, we present a novel scene-invariant crowd counting algorithm that uses local features to monitor crowd size. The use of local features allows the proposed algorithm to calculate local occupancy statistics, scale to conditions which are unseen in the training data, and be trained on significantly less data. Scene invariance is achieved through the use of camera calibration, allowing the system to be trained on one or more viewpoints and then deployed on any number of new cameras for testing without further training. A pre-trained system could then be used as a ‘turn-key’ solution for crowd counting across a wide range of environments, eliminating many of the costly barriers to deployment which currently exist.
Resumo:
The primary genetic risk factor in multiple sclerosis (MS) is the HLA-DRB1*1501 allele; however, much of the remaining genetic contribution to MS has yet to be elucidated. Several lines of evidence support a role for neuroendocrine system involvement in autoimmunity which may, in part, be genetically determined. Here, we comprehensively investigated variation within eight candidate hypothalamic-pituitary-adrenal (HPA) axis genes and susceptibility to MS. A total of 326 SNPs were investigated in a discovery dataset of 1343 MS cases and 1379 healthy controls of European ancestry using a multi-analytical strategy. Random Forests, a supervised machine-learning algorithm, identified eight intronic SNPs within the corticotrophin-releasing hormone receptor 1 or CRHR1 locus on 17q21.31 as important predictors of MS. On the basis of univariate analyses, six CRHR1 variants were associated with decreased risk for disease following a conservative correction for multiple tests. Independent replication was observed for CRHR1 in a large meta-analysis comprising 2624 MS cases and 7220 healthy controls of European ancestry. Results from a combined meta-analysis of all 3967 MS cases and 8599 controls provide strong evidence for the involvement of CRHR1 in MS. The strongest association was observed for rs242936 (OR = 0.82, 95% CI = 0.74-0.90, P = 9.7 × 10-5). Replicated CRHR1 variants appear to exist on a single associated haplotype. Further investigation of mechanisms involved in HPA axis regulation and response to stress in MS pathogenesis is warranted. © The Author 2010. Published by Oxford University Press. All rights reserved.
Resumo:
Overcoming many of the constraints to early stage investment in biofuels production from sugarcane bagasse in Australia requires an understanding of the complex technical, economic and systemic challenges associated with the transition of established sugar industry structures from single product agri-businesses to new diversified multi-product biorefineries. While positive investment decisions in new infrastructure requires technically feasible solutions and the attainment of project economic investment thresholds, many other systemic factors will influence the investment decision. These factors include the interrelationships between feedstock availability and energy use, competing product alternatives, technology acceptance and perceptions of project uncertainty and risk. This thesis explores the feasibility of a new cellulosic ethanol industry in Australia based on the large sugarcane fibre (bagasse) resource available. The research explores industry feasibility from multiple angles including the challenges of integrating ethanol production into an established sugarcane processing system, scoping the economic drivers and key variables relating to bioethanol projects and considering the impact of emerging technologies in improving industry feasibility. The opportunities available from pilot scale technology demonstration are also addressed. Systems analysis techniques are used to explore the interrelationships between the existing sugarcane industry and the developing cellulosic biofuels industry. This analysis has resulted in the development of a conceptual framework for a bagassebased cellulosic ethanol industry in Australia and uses this framework to assess the uncertainty in key project factors and investment risk. The analysis showed that the fundamental issue affecting investment in a cellulosic ethanol industry from sugarcane in Australia is the uncertainty in the future price of ethanol and government support that reduces the risks associated with early stage investment is likely to be necessary to promote commercialisation of this novel technology. Comprehensive techno-economic models have been developed and used to assess the potential quantum of ethanol production from sugarcane in Australia, to assess the feasibility of a soda-based biorefinery at the Racecourse Sugar Mill in Mackay, Queensland and to assess the feasibility of reducing the cost of production of fermentable sugars from the in-planta expression of cellulases in sugarcane in Australia. These assessments show that ethanol from sugarcane in Australia has the potential to make a significant contribution to reducing Australia’s transportation fuel requirements from fossil fuels and that economically viable projects exist depending upon assumptions relating to product price, ethanol taxation arrangements and greenhouse gas emission reduction incentives. The conceptual design and development of a novel pilot scale cellulosic ethanol research and development facility is also reported in this thesis. The establishment of this facility enables the technical and economic feasibility of new technologies to be assessed in a multi-partner, collaborative environment. As a key outcome of this work, this study has delivered a facility that will enable novel cellulosic ethanol technologies to be assessed in a low investment risk environment, reducing the potential risks associated with early stage investment in commercial projects and hence promoting more rapid technology uptake. While the study has focussed on an exploration of the feasibility of a commercial cellulosic ethanol industry from sugarcane in Australia, many of the same key issues will be of relevance to other sugarcane industries throughout the world seeking diversification of revenue through the implementation of novel cellulosic ethanol technologies.
Resumo:
Handling information overload online, from the user's point of view is a big challenge, especially when the number of websites is growing rapidly due to growth in e-commerce and other related activities. Personalization based on user needs is the key to solving the problem of information overload. Personalization methods help in identifying relevant information, which may be liked by a user. User profile and object profile are the important elements of a personalization system. When creating user and object profiles, most of the existing methods adopt two-dimensional similarity methods based on vector or matrix models in order to find inter-user and inter-object similarity. Moreover, for recommending similar objects to users, personalization systems use the users-users, items-items and users-items similarity measures. In most cases similarity measures such as Euclidian, Manhattan, cosine and many others based on vector or matrix methods are used to find the similarities. Web logs are high-dimensional datasets, consisting of multiple users, multiple searches with many attributes to each. Two-dimensional data analysis methods may often overlook latent relationships that may exist between users and items. In contrast to other studies, this thesis utilises tensors, the high-dimensional data models, to build user and object profiles and to find the inter-relationships between users-users and users-items. To create an improved personalized Web system, this thesis proposes to build three types of profiles: individual user, group users and object profiles utilising decomposition factors of tensor data models. A hybrid recommendation approach utilising group profiles (forming the basis of a collaborative filtering method) and object profiles (forming the basis of a content-based method) in conjunction with individual user profiles (forming the basis of a model based approach) is proposed for making effective recommendations. A tensor-based clustering method is proposed that utilises the outcomes of popular tensor decomposition techniques such as PARAFAC, Tucker and HOSVD to group similar instances. An individual user profile, showing the user's highest interest, is represented by the top dimension values, extracted from the component matrix obtained after tensor decomposition. A group profile, showing similar users and their highest interest, is built by clustering similar users based on tensor decomposed values. A group profile is represented by the top association rules (containing various unique object combinations) that are derived from the searches made by the users of the cluster. An object profile is created to represent similar objects clustered on the basis of their similarity of features. Depending on the category of a user (known, anonymous or frequent visitor to the website), any of the profiles or their combinations is used for making personalized recommendations. A ranking algorithm is also proposed that utilizes the personalized information to order and rank the recommendations. The proposed methodology is evaluated on data collected from a real life car website. Empirical analysis confirms the effectiveness of recommendations made by the proposed approach over other collaborative filtering and content-based recommendation approaches based on two-dimensional data analysis methods.
Resumo:
With estimates that two billion of the world’s population will be 65 years or older by 2050, ensuring that older people ‘age well’ is an international priority. To date, however, there is significant disagreement and debate about how to define and measure ‘ageing well’, with no consensus on either terminology or measurement. Thus, this chapter describes the research rationale, methodology and findings of the Australian Active Ageing Study (Triple A Study), which surveyed 2620 older Australians to identify significant contributions to quality of life for older people: work, learning, social participation, spirituality, emotional wellbeing, health, and life events. Exploratory factor analyses identified eight distinct elements (grouped into four key concepts) which appear to define ‘active ageing’ and explained 55% of the variance: social and life participation (25%), emotional health (22%), physical health and functioning (4%) and security (4%). These findings highlight the importance of understanding and supporting the social and emotional dimensions of ageing, as issues of social relationships, life engagement and emotional health dominated the factor structure. Our intension is that this paper will prompt informed debate and discussion on defining and measuring active ageing, facilitating exploration and understanding of the complexity of issues that intertwine, converge and enhance the ageing experience.
Resumo:
In gait analysis, both shoe mounted and skin mounted markers have been used to quantify the movement of the foot inside the shoe. However, these models have not been demonstrated as reliable or accurate in shod conditions. The purpose of this study was to develop an accurate and reliable marker set to describe foot-shoe complex kinematics during stance phase.
Resumo:
This paper presents techniques which can lead to diagnosis of faults in a small size multi-cylinder diesel engine. Preliminary analysis of the acoustic emission (AE) signals is outline, including time-frequency analysis and selection of optimum frequency band.The results of applying mean field independent component analysis (MFICA) to separate the AE root mean square (RMS) signals and the effects of changing parameter values are also outlined. The results on separation of RMS signals show thsi technique has the potential of increasing the probability to successfully identify the AE events associated with the various mechanical events within the combustion process of multi-cylinder diesel engines.
Resumo:
Concerns regarding groundwater contamination with nitrate and the long-term sustainability of groundwater resources have prompted the development of a multi-layered three dimensional (3D) geological model to characterise the aquifer geometry of the Wairau Plain, Marlborough District, New Zealand. The 3D geological model which consists of eight litho-stratigraphic units has been subsequently used to synthesise hydrogeological and hydrogeochemical data for different aquifers in an approach that aims to demonstrate how integration of water chemistry data within the physical framework of a 3D geological model can help to better understand and conceptualise groundwater systems in complex geological settings. Multivariate statistical techniques(e.g. Principal Component Analysis and Hierarchical Cluster Analysis) were applied to groundwater chemistry data to identify hydrochemical facies which are characteristic of distinct evolutionary pathways and a common hydrologic history of groundwaters. Principal Component Analysis on hydrochemical data demonstrated that natural water-rock interactions, redox potential and human agricultural impact are the key controls of groundwater quality in the Wairau Plain. Hierarchical Cluster Analysis revealed distinct hydrochemical water quality groups in the Wairau Plain groundwater system. Visualisation of the results of the multivariate statistical analyses and distribution of groundwater nitrate concentrations in the context of aquifer lithology highlighted the link between groundwater chemistry and the lithology of host aquifers. The methodology followed in this study can be applied in a variety of hydrogeological settings to synthesise geological, hydrogeological and hydrochemical data and present them in a format readily understood by a wide range of stakeholders. This enables a more efficient communication of the results of scientific studies to the wider community.
Resumo:
Multi-user single antenna multiple-input multiple-output orthogonal frequency division multiplexing (MUSA-MIMO-OFDM) is a promising technology to improve the spectrum efficiency of fixed wireless broadband access systems in rural areas. This letter investigates the capacity of MUSA-MIMO-OFDM uplink channel by theoretical, simulation, and empirical approaches considering up to six users. We propose an empirical capacity formula suitable for rural areas. Characteristics of channel capacity temporal variations and their relationship with the wind speed, observed in a rural area, are also presented in this letter.