399 resultados para Movable bed models (Hydraulic engineering)
Resumo:
A configurable process model provides a consolidated view of a family of business processes. It promotes the reuse of proven practices by providing analysts with a generic modelling artifact from which to derive individual process models. Unfortunately, the scope of existing notations for configurable process modelling is restricted, thus hindering their applicability. Specifically, these notations focus on capturing tasks and control-flow dependencies, neglecting equally important ingredients of business processes such as data and resources. This research fills this gap by proposing a configurable process modelling notation incorporating features for capturing resources, data and physical objects involved in the performance of tasks. The proposal has been implemented in a toolset that assists analysts during the configuration phase and guarantees the correctness of the resulting process models. The approach has been validated by means of a case study from the film industry.
Resumo:
On obstacle-cluttered construction sites, understanding the motion characteristics of objects is important for anticipating collisions and preventing accidents. This study investigates algorithms for object identification applications that can be used by heavy equipment operators to effectively monitor congested local environment. The proposed framework contains algorithms for three-dimensional spatial modeling and image matching that are based on 3D images scanned by a high-frame rate range sensor. The preliminary results show that an occupancy grid spatial modeling algorithm can successfully build the most pertinent spatial information, and that an image matching algorithm is best able to identify which objects are in the scanned scene.
Resumo:
One of the prominent topics in Business Service Management is business models for (new) services. Business models are useful for service management and engineering as they provide a broader and more holistic perspective on services. Business models are particularly relevant for service innovation as this requires paying attention to the business models that make new services viable and business model innovation can drive the innovation of new and established services. Before we can have a look at business models for services, we first need to understand what business models are. This is not straight-forward as business models are still not well comprehended and the knowledge about business models is fragmented over different disciplines, such as information systems, strategy, innovation, and entrepreneurship. This whitepaper, ‘Understanding business models,’ introduces readers to business models. This whitepaper contributes to enhancing the understanding of business models, in particular the conceptualisation of business models by discussing and integrating business model definitions, frameworks and archetypes from different disciplines. After reading this whitepaper, the reader will have a well-developed understanding about what business models are and how the concept is sometimes interpreted and used in different ways. It will help the reader in assessing their own understanding of business models and that and of others. This will contribute to a better and more beneficial use of business models, an increase in shared understanding, and making it easier to work with business model techniques and tools.
Resumo:
Current knowledge about the relationship between transport disadvantage and activity space size is limited to urban areas, and as a result, very little is known to date about this link in a rural context. In addition, although research has identified transport disadvantaged groups based on their size of activity spaces, these studies have, however, not empirically explained such differences and the result is often a poor identification of the problems facing disadvantaged groups. Research has shown that transport disadvantage varies over time. The static nature of analysis using the activity space concept in previous research studies has lacked the ability to identify transport disadvantage in time. Activity space is a dynamic concept; and therefore possesses a great potential in capturing temporal variations in behaviour and access opportunities. This research derives measures of the size and fullness of activity spaces for 157 individuals for weekdays, weekends, and for a week using weekly activity-travel diary data from three case study areas located in rural Northern Ireland. Four focus groups were also conducted in order to triangulate the quantitative findings and to explain the differences between different socio-spatial groups. The findings of this research show that despite having a smaller sized activity space, individuals were not disadvantaged because they were able to access their required activities locally. Car-ownership was found to be an important life line in rural areas. Temporal disaggregation of the data reveals that this is true only on weekends due to a lack of public transport services. In addition, despite activity spaces being at a similar size, the fullness of activity spaces of low-income individuals was found to be significantly lower compared to their high-income counterparts. Focus group data shows that financial constraint, poor connections both between public transport services and between transport routes and opportunities forced individuals to participate in activities located along the main transport corridors.
Resumo:
We examine the impact of individual-specific information processing strategies (IPSs) on the inclusion/exclusion of attributes on the parameter estimates and behavioural outputs of models of discrete choice. Current practice assumes that individuals employ a homogenous IPS with regards to how they process attributes of stated choice (SC) experiments. We show how information collected exogenous of the SC experiment on whether respondents either ignored or considered each attribute may be used in the estimation process, and how such information provides outputs that are IPS segment specific. We contend that accounting the inclusion/exclusion of attributes will result in behaviourally richer population parameter estimates.
Resumo:
This research paper aims to develop a method to explore the travel behaviour differences between disadvantaged and non-disadvantaged populations. It also aims to develop a modelling approach or a framework to integrate disadvantage analysis into transportation planning models (TPMs). The methodology employed identifies significantly disadvantaged groups through a cluster analysis and the paper presents a disadvantage-integrated TPM. This model could be useful in determining areas with concentrated disadvantaged population and also developing and formulating relevant disadvantage sensitive policies. (a) For the covering entry of this conference, please see ITRD abstract no. E214666.
Resumo:
This paper presents the results of a series of tension tests on CFRP bonded steel plate double strap joints. The main aim of this research is to provide detailed understanding of bond characteristics using experimental and numerical analysis of strengthened double strap joints under tension. A parametric study has been performed by numerical modelling with the variables of CFRP bond lengths, adhesive maximum strain and adhesive layer thicknesses. Finally, bond-slip models are proposed for three different types of adhesives within the range of the parametric study.
Resumo:
Using six kinds of lattice types (4×4 ,5×5 , and6×6 square lattices;3×3×3 cubic lattice; and2+3+4+3+2 and4+5+6+5+4 triangular lattices), three different size alphabets (HP ,HNUP , and 20 letters), and two energy functions, the designability of proteinstructures is calculated based on random samplings of structures and common biased sampling (CBS) of proteinsequence space. Then three quantities stability (average energy gap),foldability, and partnum of the structure, which are defined to elucidate the designability, are calculated. The authors find that whatever the type of lattice, alphabet size, and energy function used, there will be an emergence of highly designable (preferred) structure. For all cases considered, the local interactions reduce degeneracy and make the designability higher. The designability is sensitive to the lattice type, alphabet size, energy function, and sampling method of the sequence space. Compared with the random sampling method, both the CBS and the Metropolis Monte Carlo sampling methods make the designability higher. The correlation coefficients between the designability, stability, and foldability are mostly larger than 0.5, which demonstrate that they have strong correlation relationship. But the correlation relationship between the designability and the partnum is not so strong because the partnum is independent of the energy. The results are useful in practical use of the designability principle, such as to predict the proteintertiary structure.
Resumo:
Gaining invariance to camera and illumination variations has been a well investigated topic in Active Appearance Model (AAM) fitting literature. The major problem lies in the inability of the appearance parameters of the AAM to generalize to unseen conditions. An attractive approach for gaining invariance is to fit an AAM to a multiple filter response (e.g. Gabor) representation of the input image. Naively applying this concept with a traditional AAM is computationally prohibitive, especially as the number of filter responses increase. In this paper, we present a computationally efficient AAM fitting algorithm based on the Lucas-Kanade (LK) algorithm posed in the Fourier domain that affords invariance to both expression and illumination. We refer to this as a Fourier AAM (FAAM), and show that this method gives substantial improvement in person specific AAM fitting performance over traditional AAM fitting methods.
Resumo:
Hybrid system representations have been applied to many challenging modeling situations. In these hybrid system representations, a mixture of continuous and discrete states is used to capture the dominating behavioural features of a nonlinear, possible uncertain, model under approximation. Unfortunately, the problem of how to best design a suitable hybrid system model has not yet been fully addressed. This paper proposes a new joint state measurement relative entropy rate based approach for this design purpose. Design examples and simulation studies are presented which highlight the benefits of our proposed design approaches.