214 resultados para Monocular Vision.
Resumo:
Machine vision represents a particularly attractive solution for sensing and detecting potential collision-course targets due to the relatively low cost, size, weight, and power requirements of the sensors involved. This paper describes the development of detection algorithms and the evaluation of a real-time flight ready hardware implementation of a vision-based collision detection system suitable for fixed-wing small/medium size UAS. In particular, this paper demonstrates the use of Hidden Markov filter to track and estimate the elevation (β) and bearing (α) of the target, compares several candidate graphic processing hardware choices, and proposes an image based visual servoing approach to achieve collision avoidance
Resumo:
This paper examines The Mill Albion community history project, a diverse, multi-layered public history/art program that captures the social heritage of The Albion Flour Mill, as told through images produced as part of a research consultancy undertaken by QUT for FKP Property Group. The Albion Flour Mill was built in 1930 and continued operations for more than 72 years. After ceasing operation in 2005 the site was left to deteriorate. The FKP Property Group purchased the land to undertake a new urban redevelopment project. This paper reflects on the project and showcases some of the culturally creative ways this community’s history was told, using images.
Resumo:
Purpose: To investigate the short term influence of imposed monocular defocus upon human optical axial length (the distance from anterior cornea to retinal pigment epithelium) and ocular biometrics. Methods: Twenty-eight young adult subjects (14 myopes and 14 emmetropes) had eye biometrics measured before and then 30 and 60 minutes after exposure to monocular (right eye) defocus. Four different monocular defocus conditions were tested, each on a separate day: control (no defocus), myopic (+3 D defocus), hyperopic (-3 D defocus) and diffuse (0.2 density Bangerter filter) defocus. The fellow eye was optimally corrected (no defocus). Results: Imposed defocus caused small but significant changes in optical axial length (p<0.0001). A significant increase in optical axial length (mean change +8 ± 14 μm, p=0.03) occurred following hyperopic defocus, and a significant reduction in optical axial length (mean change -13 ± 14 μm, p=0.0001) was found following myopic defocus. A small increase in optical axial length was observed following diffuse defocus (mean change +6 ± 13 μm, p=0.053). Choroidal thickness also exhibited some significant changes with certain defocus conditions. No significant difference was found between myopes and emmetropes in the changes in optical axial length or choroidal thickness with defocus. Conclusions: Significant changes in optical axial length occur in human subjects following 60 minutes of monocular defocus. The bi-directional optical axial length changes observed in response to defocus implies the human visual system is capable of detecting the presence and sign of defocus and altering optical axial length to move the retina towards the image plane.
Resumo:
PURPOSE: To determine if participants with normal visual acuity, no ophthalmoscopically signs of age-related maculopathy (ARM) in both eyes and who are carriers of the CFH, LOC387715 and HRTA1 high-risk genotypes (“gene-positive”) have impaired rod- and cone-mediated mesopic visual function compared to persons who do not carry the risk genotypes (“gene-negative”).---------- METHODS: Fifty-three Caucasian study participants (mean 55.8 ± 6.1) were genotyped for CFH, LOC387715/ARMS2 and HRTA1 polymorphisms. We genotyped single nucleotide polymorphisms (SNPs) in the CFH (rs380390), LOC387715/ARMS2 (rs10490924) and HTRA1 (rs11200638) genes using Applied Biosystems optimised TaqMan assays. We determined the critical fusion frequency (CFF) mediated by cones alone (Long, Middle and Short wavelength sensitive cones; LMS) and by the combined activities of cones and rods (LMSR). The stimuli were generated using a 4-primary photostimulator that provides independent control of the photoreceptor excitation under mesopic light levels. Visual function was further assessed using standard clinical tests, flicker perimetry and microperimetry.---------- RESULTS: The mesopic CFF mediated by rods and cones (LMSR) was significantly reduced in gene-positive compared to gene-negative participants after correction for age (p=0.03). Cone-mediated CFF (LMS) was not significantly different between gene-positive and -negative participants. There were no significant associations between flicker perimetry and microperimetry and genotype.---------- CONCLUSIONS: This is the first study to relate ARM risk genotypes with mesopic visual function in clinically normal persons. These preliminary results could become of clinical importance as mesopic vision may be used to document sub-clinical retinal changes in persons with risk genotypes and to determine whether those persons progress into manifest disease.
Resumo:
Purpose. To investigate the effect of various presbyopic vision corrections on nighttime driving performance on a closed-road driving circuit. Methods. Participants were 11 presbyopes (mean age, 57.3 ± 5.8 years), with a mean best sphere distance refractive error of R+0.23±1.53 DS and L+0.20±1.50 DS, whose only experience of wearing presbyopic vision correction was reading spectacles. The study involved a repeated-measures design by which a participant's nighttime driving performance was assessed on a closed-road circuit while wearing each of four power-matched vision corrections. These included single-vision distance lenses (SV), progressive-addition spectacle lenses (PAL), monovision contact lenses (MV), and multifocal contact lenses (MTF CL) worn in a randomized order. Measures included low-contrast road hazard detection and avoidance, road sign and near target recognition, lane-keeping, driving time, and legibility distance for street signs. Eye movement data (fixation duration and number of fixations) were also recorded. Results. Street sign legibility distances were shorter when wearing MV and MTF CL than SV and PAL (P < 0.001), and participants drove more slowly with MTF CL than with PALs (P = 0.048). Wearing SV resulted in more errors (P < 0.001) and in more (P = 0.002) and longer (P < 0.001) fixations when responding to near targets. Fixation duration was also longer when viewing distant signs with MTF CL than with PAL (P = 0.031). Conclusions. Presbyopic vision corrections worn by naive, unadapted wearers affected nighttime driving. Overall, spectacle corrections (PAL and SV) performed well for distance driving tasks, but SV negatively affected viewing near dashboard targets. MTF CL resulted in the shortest legibility distance for street signs and longer fixation times.
Resumo:
Visual impairment is an important contributing factor in falls among older adults, which is one of the leading causes of injury and injury-related death in this population. Visual impairment is also associated with greater disability among older adults, including poorer health-related quality of life, increased frailty and reduced postural stability. The majority of this evidence, however, is based on measures of central visual function, rather than peripheral visual function. As such, there is comparatively limited research on the associations between peripheral visual function, disability and falls, and even fewer studies involving older adults with specific diseases which affect peripheral visual function, the most common of which is glaucoma. Glaucoma is one of the leading causes of irreversible vision loss among older adults, affecting around 3 per cent of adults aged over 60 years. The condition is characterised by retinal nerve fibre loss, primarily affecting peripheral visual function. Importantly, the number of older adults with glaucomatous visual impairment is projected to increase as the ageing population grows. The first component of the thesis examined the cross-sectional association between glaucomatous visual impairment and health-related quality of life (Study 1a), functional status (Study 1b) and postural stability (Study 1c) among older adults. A cohort of 74 community-dwelling adults with glaucoma (mean age 74.2 ± 5.9 years) was recruited and completed a baseline assessment. A number of visual function measures was assessed, including central visual function (visual acuity and contrast sensitivity), motion sensitivity, retinal nerve fibre analysis and monocular and binocular visual field measures (monocular 24-2 and binocular integrated visual fields (IVF): IVF-60 and IVF-120). The analyses focused on the associations between the outcomes measures and severity and location of visual field loss, as this is the primary visual function affected by glaucoma. In Study 1a, we examined the association between visual field loss and health-related quality of life, measured by the Short Form 36-item Health Survey (SF-36). Greater binocular visual field loss, on both IVF measures, was associated with lower SF-36 physical component scores, adjusted for age and gender (Pearson's r =|0.32| to |0.36|, p<0.001). Furthermore, inferior visual field loss was more strongly associated with the SF-36 physical component than superior field loss. No association was found between visual field loss and SF-36 mental component scores. The association between visual field loss and functional status was examined in Study 1b. Functional status outcomes measures included a physical activity questionnaire (Physical Activity Scale for the Elderly, PASE), performance tests (six-minute walk test, timed up and go test and lower leg strength) and an overall functional status score. Significant, but weak, correlations were found between binocular visual field loss and PASE and overall functional status scores, adjusted for age and gender (Pearson's r =|0.24| to |0.33|, p<0.05). Greater inferior visual field loss, independent of superior visual field loss, was significantly associated with poorer physical performance results and lower overall functional status scores. In Study 1c, we examined the association between visual field loss and postural stability, using a swaymeter device which recorded body movement during four conditions: eyes open and closed, on a firm and foam surface. Greater binocular visual field loss was associated with increased postural sway, both on firm and foam surfaces, independent of age and gender (Pearson’s r =|0.44| to |0.46|, p <0.001). Furthermore, inferior visual field was a stronger contributor to postural stability, more so than the superior visual field, particularly on the foam condition with the eyes open. Greater visual field loss was associated with a reduction in the visual contribution to postural sway, which underlies the observed association with postural sway. The second component of the thesis examined the association between severity and location of visual field loss and falls during a 12-month longitudinal follow-up. The number of falls was assessed prospectively using monthly fall calendars. Of the 71 participants who successfully completed the follow up (mean age 73.9 ± 5.7 years), 44% reported one or more falls, and around 20% reported two or more falls. After adjusting for age and gender, every 10 points missed on the IVF-120 increased the rate of falls by 25% (rate ratio 1.25, 95% confidence interval 1.08 - 1.44) or every 5dB reduction in IVF-60 increased the rate of falls by 47% (rate ratio 1.47, 95% confidence interval 1.16 - 1.87). Inferior visual field loss was a significant predictor of falls, more so than superior field loss, highlighting the importance of the inferior visual field area in safe and efficient navigation. Further analyses indicated that postural stability, more so than functional status, may be a potential mediating factor in the relationship between visual field loss and falls. Future research is required to confirm this causal pathway. In addition, the use of topical beta-blocker medications was not associated with an increased rate of falls in this cohort, compared with the use of other topical anti-glaucoma medications. In summary, greater binocular visual field loss among older adults with glaucoma was associated with poorer health-related quality of life in the physical domain, reduced functional status, greater postural instability and higher rates of falling. When the location of visual field loss was examined, inferior visual field loss was consistently more strongly associated with these outcomes than superior visual field loss. Insights gained from this research improve our understanding of the association between glaucomatous visual field loss and disability, and its link with falls among older adults. The clinical implications of this research include the need to include visual field screening in falls risk assessments among older adults and to raise awareness of these findings to eye care practitioners and adults with glaucoma. The findings also assist in developing further research to examine strategies to reduce disability and prevent falls among older adults with glaucoma to promote healthy ageing and independence for these individuals.
Resumo:
This paper argues that young people need to be given the opportunity to recognise the interaction between their own understandings of the world as it is now and the vision of what it might become. To support this argument, we discuss an urban planning project, known as the Lower Mill Site Project, which involved active participation of high school students from the local community. The outcomes of this project demonstrate the positive contributions young people can make to the process of urban redevelopment, the advantages of using a participatory design approach, and the utopian possibilities that can emerge when young people are invited to be part of an intergenerational community project.
Resumo:
This paper presents the development of a low-cost sensor platform for use in ground-based visual pose estimation and scene mapping tasks. We seek to develop a technical solution using low-cost vision hardware that allows us to accurately estimate robot position for SLAM tasks. We present results from the application of a vision based pose estimation technique to simultaneously determine camera poses and scene structure. The results are generated from a dataset gathered traversing a local road at the St Lucia Campus of the University of Queensland. We show the accuracy of the pose estimation over a 1.6km trajectory in relation to GPS ground truth.
Resumo:
Stereo vision is a method of depth perception, in which depth information is inferred from two (or more) images of a scene, taken from different perspectives. Applications of stereo vision include aerial photogrammetry, autonomous vehicle guidance, robotics, industrial automation and stereomicroscopy. A key issue in stereo vision is that of image matching, or identifying corresponding points in a stereo pair. The difference in the positions of corresponding points in image coordinates is termed the parallax or disparity. When the orientation of the two cameras is known, corresponding points may be projected back to find the location of the original object point in world coordinates. Matching techniques are typically categorised according to the nature of the matching primitives they use and the matching strategy they employ. This report provides a detailed taxonomy of image matching techniques, including area based, transform based, feature based, phase based, hybrid, relaxation based, dynamic programming and object space methods. A number of area based matching metrics as well as the rank and census transforms were implemented, in order to investigate their suitability for a real-time stereo sensor for mining automation applications. The requirements of this sensor were speed, robustness, and the ability to produce a dense depth map. The Sum of Absolute Differences matching metric was the least computationally expensive; however, this metric was the most sensitive to radiometric distortion. Metrics such as the Zero Mean Sum of Absolute Differences and Normalised Cross Correlation were the most robust to this type of distortion but introduced additional computational complexity. The rank and census transforms were found to be robust to radiometric distortion, in addition to having low computational complexity. They are therefore prime candidates for a matching algorithm for a stereo sensor for real-time mining applications. A number of issues came to light during this investigation which may merit further work. These include devising a means to evaluate and compare disparity results of different matching algorithms, and finding a method of assigning a level of confidence to a match. Another issue of interest is the possibility of statistically combining the results of different matching algorithms, in order to improve robustness.
Resumo:
Construction 2020 is a national initiative undertaken by CRC for Construction Innovation to focus its ongoing leadership of the Australian property and construction industry in applied research and best contribute to the industry's national and international growth and competitiveness. It is the first major report on the long-term outlook for the industry since the late 1990s. The report identifies nine key themes for the future of the property and construction industry. These visions describe the major concerns of the industry and the improved future working environment favoured by its stakeholders. The first and clearest vision, agreed across the industry, is that environmentally sustainable construction the creation of buildings and infrastructure that minimise their impact on the natural environment is an area of huge potential. Here technologies like Construction Innovation's LCADesign can make a big difference. This is a calculator that works out automatically from 3D computer-aided design the environmental costs of materials in a building all at the push of a button. By working with industry, we'd expect to have a comprehensive set of eco-design tools for all stages of the construction life cycle, to minimise energy use, greenhouse and other forms of waste or pollution. Other significant areas of focus in the report include the development of nationally uniform codes of practice, new tools to evaluate design and product performance, comparisons with overseas industries, and a worldwide research network to ensure that Australian technology is at the cutting edge.
Resumo:
Previous research has suggested that perceptual-motor difficulties may account for obese children's lower motor competence; however, specific evidence is currently lacking. Therefore, this study examined the effect of altered visual conditions on spatiotemporal and kinematic gait parameters in obese versus normal-weight children. Thirty-two obese and normal-weight children (11.2 ± 1.5 years) walked barefoot on an instrumented walkway at constant self-selected speed during LIGHT and DARK conditions. Three-dimensional motion analysis was performed to calculate spatiotemporal parameters, as well as sagittal trunk segment and lower extremity joint angles at heel-strike and toe-off. Self-selected speed did not significantly differ between groups. In the DARK condition, all participants walked at a significantly slower speed, decreased stride length, and increased stride width. Without normal vision, obese children had a more pronounced increase in relative double support time compared to the normal-weight group, resulting in a significantly greater percentage of the gait cycle spent in stance. Walking in the DARK, both groups showed greater forward tilt of the trunk and restricted hip movement. All participants had increased knee flexion at heel-strike, as well as decreased knee extension and ankle plantarflexion at toe-off in the DARK condition. The removal of normal vision affected obese children's temporal gait pattern to a larger extent than that of normal-weight peers. Results suggest an increased dependency on vision in obese children to control locomotion. Next to the mechanical problem of moving excess mass, a different coupling between perception and action appears to be governing obese children's motor coordination and control.
Resumo:
Purpose: To examine the relationship between visual impairment and functional status in a community-dwelling sample of older adults with glaucoma. Methods: This study included 74 community-dwelling older adults with open-angle glaucoma (aged 74 ± 6 years). Assessment of central vision included high-contrast visual acuity and Pelli-Robson contrast sensitivity. Binocular integrated visual fields were derived from merged monocular Humphrey Field Analyser visual field plots. Functional status outcome measures included physical performance tests (6-min walk test, timed up and go test and lower limb strength), a physical activity questionnaire (Physical Activity Scale for the Elderly) and an overall functional status score. Correlation and linear regression analyses, adjusting for age and gender, examined the association between visual impairment and functional status outcomes. Results: Greater levels of visual impairment were significantly associated with lower levels of functional status among community-dwelling older adults with glaucoma, independent of age and gender. Specifically, lower levels of visual function were associated with slower timed up and go performance, weaker lower limb strength, lower self-reported physical activity, and lower overall functional status scores. Of the components of vision examined, the inferior visual field and contrast factors were the strongest predictors of these functional outcomes, whereas the superior visual field factor was not related to functional status. Conclusions: Greater visual impairment, particularly in the inferior visual field and loss of contrast sensitivity, was associated with poorer functional status among older adults with glaucoma. The findings of this study highlight the potential links between visual impairment and the onset of functional decline. Interventions which promote physical activity among older adults with glaucoma may assist in preventing functional decline, frailty and falls, and improve overall health and well-being.
Resumo:
The OECD (2006 Starting Strong II: Early Childhood Education and Care. OECD Publishing: Paris) envisions early childhood education and care settings as meeting places for diverse social groups; places that build social capital. This vision was assessed in a comparison of three preschools types: full-fee paying, subsidised-fee and publicly funded. The social composition within each was examined and the connectedness of the children (n = 472) who attended compared. Publicly funded preschools had more socially diverse populations. The quantity of social connectedness did not differ but children in publicly funded preschools described higher quality social relationships. Not all preschool settings are socially diverse but, where they are, the quality of relationships is highest.
Resumo:
This study investigated the Kinaesthetic Fusion Effect (KFE) first described by Craske and Kenny in 1981. The current study did not replicate these findings. Participants did not perceive any reduction in the sagittal separation of a button pressed by the index finger of one arm and a probe touching the other, following repeated exposure to the tactile stimuli present on both unseen arms. This study’s failure to replicate the widely-cited KFE as described by Craske et al. (1984) suggests that it may be contingent on several aspects of visual information, especially the availability of a specific visual reference, the role of instructions regarding gaze direction, and the potential use of a line of sight strategy when referring felt positions to an interposed surface. In addition, a foreshortening effect was found; this may result from a line-of-sight judgment and represent a feature of the reporting method used. The transformed line of sight data were regressed against the participant reported values, resulting in a slope of 1.14 (right arm) and 1.11 (left arm), and r > 0.997 for each. The study also provides additional evidence that mis-perceptions of the mediolateral position of the limbs specifically their separation and consistent with notions of Gestalt grouping, is somewhat labile and can be influenced by active motions causing touch of one limb by the other. Finally, this research will benefit future studies that require participants to report the perceived locations of the unseen limbs.