141 resultados para Modulated logics
Resumo:
Problem Susceptibility to Chlamydia trachomatis infection is increased by oral con- traceptives and modulated by sex hormones. We therefore sought to determine the effects of female sex hormones on the innate immune response to C. trachomatis infection. Method of study ECC-1 endometrial cells, pre-treated with oestradiol or progesterone, were infected with C. trachomatis and the host transcriptome analysed by Illumina Sentrix HumanRef-8 microarray. Primary endocervical epithe- lial cells, prepared at either the proliferative or secretory phase of the menstrual cycle, were infected with C. trachomatis and cytokine gene expression determined by quantitative RT-PCR analysis. Results Chlamydia trachomatis yield from progesterone-primed ECC-1 cells was significantly reduced compared with oestradiol-treated cells. Genes upregulated in progesterone-treated and Chlamydia-infected cells only included multiple CC and CXC chemokines, IL-17C, IL-29, IL-32, TNF-a, DEFB4B, LCN2, S100A7-9, ITGAM, NOD2, JAK1, IL-6ST, type I and II interferon receptors, numerous interferon-stimulated genes and STAT6. CXCL10, CXCL11, CX3CL1 and IL-17C, which were also upregu- lated in infected secretory-stage primary cells, and there was a trend towards higher levels of immune mediators in infected secretory-phase compared with proliferative-phase cells. Conclusion Progesterone treatment primes multiple innate immune pathways in hormone-responsive epithelial cells that could potentially increase resis- tance to chlamydial infection.
Resumo:
Introduction Epithelial-to-mesenchymal transition (EMT) promotes cell migration and is important in metastasis. Cellular proliferation is often downregulated during EMT, and the reverse transition (MET) in metastases appears to be required for restoration of proliferation in secondary tumors. We studied the interplay between EMT and proliferation control by MYB in breast cancer cells. Methods MYB, ZEB1, and CDH1 expression levels were manipulated by lentiviral small-hairpin RNA (shRNA)-mediated knockdown/overexpression, and verified with Western blotting, immunocytochemistry, and qRT-PCR. Proliferation was assessed with bromodeoxyuridine pulse labeling and flow cytometry, and sulforhodamine B assays. EMT was induced with epidermal growth factor for 9 days or by exposure to hypoxia (1% oxygen) for up to 5 days, and assessed with qRT-PCR, cell morphology, and colony morphology. Protein expression in human breast cancers was assessed with immunohistochemistry. ZEB1-MYB promoter binding and repression were determined with Chromatin Immunoprecipitation Assay and a luciferase reporter assay, respectively. Student paired t tests, Mann–Whitney, and repeated measures two-way ANOVA tests determined statistical significance (P < 0.05). Results Parental PMC42-ET cells displayed higher expression of ZEB1 and lower expression of MYB than did the PMC42-LA epithelial variant. Knockdown of ZEB1 in PMC42-ET and MDA-MB-231 cells caused increased expression of MYB and a transition to a more epithelial phenotype, which in PMC42-ET cells was coupled with increased proliferation. Indeed, we observed an inverse relation between MYB and ZEB1 expression in two in vitro EMT cell models, in matched human breast tumors and lymph node metastases, and in human breast cancer cell lines. Knockdown of MYB in PMC42-LA cells (MYBsh-LA) led to morphologic changes and protein expression consistent with an EMT. ZEB1 expression was raised in MYBsh-LA cells and significantly repressed in MYB-overexpressing MDA-MB-231 cells, which also showed reduced random migration and a shift from mesenchymal to epithelial colony morphology in two dimensional monolayer cultures. Finally, we detected binding of ZEB1 to MYB promoter in PMC42-ET cells, and ZEB1 overexpression repressed MYB promoter activity. Conclusions This work identifies ZEB1 as a transcriptional repressor of MYB and suggests a reciprocal MYB-ZEB1 repressive relation, providing a mechanism through which proliferation and the epithelial phenotype may be coordinately modulated in breast cancer cells.
Resumo:
Both tyrosine hydroxylase-positive fibres from the mesolimbic dopamine system and amygdala projection fibres from the basolateral nucleus are known to terminate heavily in the nucleus accumbens. Caudal amygdala fibres travelling dorsally via the stria terminalis project densely to the nucleus accumbens shell, especially in the dopamine rich septal hook. The amygdala has been associated with the recognition of emotionally relevant stimuli while the mesolimbic dopamine system is implicated with reward mechanisms. There is behavioural and electrophysiological evidence that the amygdala input to the nucleus accumbens is modulated by the mesolimbic dopamine input, but it is not known how these pathways interact anatomically within the nucleus accumbens. Using a variety of neuroanatomical techniques including anterograde and retrograde tracing, immunocytochemistry and intracellular filling, we have demonstrated convergence of these inputs on to medium-sized spiny neurons. The terminals of the basolateral amygdala projection make asymmetrical synapses predominantly on the heads of spines which also receive on their necks or adjacent dendrites, symmetrical synaptic input from the mesolimbic dopamine system. Some of these neurons have also been identified as projection neurons, possibly to the ventral pallidum. We have shown a synaptic level how dopamine is positioned to modulate excitatory limbic input in the nucleus accumbens.
Resumo:
Many data have emerged in support of the concept that the promotion of a migratory phenotype in epithelial cells is the result of an EMT, which leads to the loss of differentiation and to the acquisition of several mesenchymal features. Such an event is likely to occur during the metastatic conversion enabling the metastatic cell to invade the connective tissue and disseminate. Even though it cannot be excluded that some cancer cells might constitutively express a metastatic phenotype, the EMT implicated in the tumor progression process would rather be transient, induced in certain cells of the primary tumor by different factors, and reversed when the cells settle down in secondary organs (as schematically represented in Figure 1). However, it is clear that the phenotype that would emerge from the EMT occurring during tumor progression would also be modulated by the genetic background of the cells and must be to some extent different than the ones observed in normal physiological processes, and must also vary from one tumor to another.
Resumo:
Frizzled (FZD) receptors have a conserved N-terminal extracellular cysteine-rich domain that interacts with Wnts and co-expression of the receptor ectodomain can antagonize FZD-mediated signalling. Using the ectodomain as an antagonist we have modulated endogenous FZD7 signalling in the moderately differentiated colon adenocarcinoma cell line, SK-CO-1. Unlike the parental cell line, which grows as tightly associated adherent cell clusters, the FZD7 ectodomain expressing cells display a spread out morphology and grow as a monolayer in tissue culture. This transition in morphology was associated with decreased levels of plasma membrane-associated E-cadherin and β-catenin, localized increased levels of vimentin and redistribution of α6 integrin to cellular processes in the FZD7 ectodomain expressing cells. The morphological and phenotype changes induced by FZD7 ectodomain expression in SK-CO-1 cells is thus consistent with the cells undergoing an epithelial-to-mesenchymal-like transition. Furthermore, initiation of tumor formation in a xenograft tumor growth assay was attenuated in the FZD7 ectodomain expressing cells. Our results indicate a pivotal role for endogenous FZD7 in morphology transitions that are associated with colon tumor initiation and progression.
Resumo:
The ability to inhibit unwanted actions is a heritable executive function that may confer risk to disorders such as attention deficit hyperactivity disorder (ADHD). Converging evidence from pharmacology and cognitive neuroscience suggests that response inhibition is instantiated within frontostriatal circuits of the brain with patterns of activity that are modulated by the catecholamines dopamine and noradrenaline. A total of 405 healthy adult participants performed the stop-signal task, a paradigmatic measure of response inhibition that yields an index of the latency of inhibition, termed the stop-signal reaction time (SSRT). Using this phenotype, we tested for genetic association, performing high-density single-nucleotide polymorphism mapping across the full range of autosomal catecholamine genes. Fifty participants also underwent functional magnetic resonance imaging to establish the impact of associated alleles on brain and behaviour. Allelic variation in polymorphisms of the dopamine transporter gene (SLC6A3: rs37020; rs460000) predicted individual differences in SSRT, after corrections for multiple comparisons. Furthermore, activity in frontal regions (anterior frontal, superior frontal and superior medial gyri) and caudate varied additively with the T-allele of rs37020. The influence of genetic variation in SLC6A3 on the development of frontostriatal inhibition networks may represent a key risk mechanism for disorders of behavioural inhibition.
Resumo:
Purpose This study explores recent claims that humans exhibit a minimum cost of transport (CoTmin) for running which occurs at an intermediate speed, and assesses individual physiological, gait and training characteristics. Methods Twelve healthy participants with varying levels of fitness and running experience ran on a treadmill at six self-selected speeds in a discontinuous protocol over three sessions. Running speed (km[middle dot]hr-1), V[spacing dot above]O2 (mL[middle dot]kg-1[middle dot]km-1), CoT (kcal[middle dot]km-1), heart rate (beats[middle dot]min-1) and cadence (steps[middle dot]min-1) were continuously measured. V[spacing dot above]O2 max was measured on a fourth testing session. The occurrence of a CoTmin was investigated and its presence or absence examined with respect to fitness, gait and training characteristics. Results Five participants showed a clear CoTmin at an intermediate speed and a statistically significant (p < 0.05) quadratic CoT-speed function, while the other participants did not show such evidence. Participants were then categorized and compared with respect to the strength of evidence for a CoTmin (ClearCoTmin and NoCoTmin). The ClearCoTmin group displayed significantly higher correlation between speed and cadence; more endurance training and exercise sessions per week; than the NoCoTmin group; and a marginally non-significant but higher aerobic capacity. Some runners still showed a CoTmin at an intermediate speed even after subtraction of resting energy expenditure. Conclusion The findings confirm the existence of an optimal speed for human running, in some but not all participants. Those exhibiting a COTmin undertook a higher volume of running, ran with a cadence that was more consistently modulated with speed, and tended to be aerobically fitter. The ability to minimise the energetic cost of transport appears not to be ubiquitous feature of human running but may emerge in some individuals with extensive running experience.
Resumo:
A Three-Phase Nine-Switch Converter (NSC) topology for Doubly Fed Induction Generator in wind energy generation is proposed in this paper. This converter topology was used in various applications such as Hybrid Electric Vehicles and Uninterruptable Power Supplies. In this paper, Nine-Switch Converter is introduced in Doubly Fed Induction Generator in renewable energy application for the first time. It replaces the conventional Back-to-Back Pulse Width Modulated voltage source converter (VSC) which composed of twelve switches in many DFIG applications. Reduction in number of switches is the most beneficial in terms of cost and power switching losses. The operation principle of Nine-Switch Converter using SPWM method is discussed. The resulting NSC performance of rotor side current control, active power and reactive control are compared with Back-to Back voltage source converter performance. DC link voltage regulation using front end converter is also presented. Finally the simulation results of DFIG performances using NSC and Back-to-Back VSC are analyzed and compared.
Resumo:
A high-frequency-link (HFL) micro inverter with a front-end diode clamped multi-level inverter and a grid-connected half-wave cycloconverter is proposed. The diode clamped multi-level inverter with an auxiliary capacitor is used to generate high-frequency (HF) three level quasi square-wave output and it is fed into a series resonant tank to obtain high frequency continuous sinusoidal current. The obtained continuous sinusoidal current is modulated by using the grid-connected half-wave cycloconverter to obtain grid synchronized output current in phase with the grid voltage. The phase shift power modulation is used with auxiliary capacitor at the front-end multi-level inverter to have soft-switching. The phase shift between the HFL resonant current and half-wave cycloconverter input voltage is modulated to obtain grid synchronized output current.
Resumo:
Purpose To establish whether the use of a passive or active technique of planning target volume (PTV) definition and treatment methods for non-small cell lung cancer (NSCLC) deliver the most effective results. This literature review assesses the advantages and disadvantages in recent studies of each, while assessing the validity of the two approaches for planning and treatment. Methods A systematic review of literature focusing on the planning and treatment of radiation therapy to NSCLC tumours. Different approaches which have been published in recent articles are subjected to critical appraisal in order to determine their relative efficacy. Results Free-breathing (FB) is the optimal method to perform planning scans for patients and departments, as it involves no significant increase in cost, workload or education. Maximum intensity projection (MIP) is the fastest form of delineation, however it is noted to be less accurate than the ten-phase overlap approach for computed tomography (CT). Although gating has proven to reduce margins and facilitate sparing of organs at risk, treatment times can be longer and planning time can be as much as 15 times higher for intensity modulated radiation therapy (IMRT). This raises issues with patient comfort and stabilisation, impacting on the chance of geometric miss. Stereotactic treatments can take up to 3 hours to treat, along with increases in planning and treatment, as well as the additional hardware, software and training required. Conclusion Four-dimensional computed tomography (4DCT) is superior to 3DCT, with the passive FB approach for PTV delineation and treatment optimal. Departments should use a combination of MIP with visual confirmation ensuring coverage for stage 1 disease. Stages 2-3 should be delineated using ten-phases overlaid. Stereotactic and gated treatments for early stage disease should be used accordingly; FB-IMRT is optimal for latter stage disease.
Resumo:
Emotionally arousing events can distort our sense of time. We used mixed block/event-related fMRI design to establish the neural basis for this effect. Nineteen participants were asked to judge whether angry, happy and neutral facial expressions that varied in duration (from 400 to 1,600 ms) were closer in duration to either a short or long duration they learnt previously. Time was overestimated for both angry and happy expressions compared to neutral expressions. For faces presented for 700 ms, facial emotion modulated activity in regions of the timing network Wiener et al. (NeuroImage 49(2):1728–1740, 2010) namely the right supplementary motor area (SMA) and the junction of the right inferior frontal gyrus and anterior insula (IFG/AI). Reaction times were slowest when faces were displayed for 700 ms indicating increased decision making difficulty. Taken together with existing electrophysiological evidence Ng et al. (Neuroscience, doi: 10.3389/fnint.2011.00077, 2011), the effects are consistent with the idea that facial emotion moderates temporal decision making and that the right SMA and right IFG/AI are key neural structures responsible for this effect.
Resumo:
Human cytochrome P450 (P450) enzymes are involved in the oxidation of natural products found in foods, beverages, and tobacco products and their catalytic activities can also be modulated by components of the materials. The microsomal activation of aflatoxin B1 to the exo-3,9-epoxide is stimulated by flavone and 7,8-benzoflavone, and attenuated by the flavonoid naringenin, a major component of grapefruit. P4502E1 has been demonstrated to play a potentially major role in the activation of a number of very low-molecular weight cancer suspects, including ethyl carbamate (urethan), which is present in alcoholic beverages and particularly stone brandies. The enzyme (P4502E1) is also known to be inducible by ethanol. Tobacco contains a large number of potential carcinogens. In human liver microsomes a significant role for P4501A2 can be demonstrated in the activation of cigarette smoke condensate. Some of the genotoxicity may be due to arylamines. P4501A2 is also inhibited by components of crude cigarette smoke condensate. The tobacco-specific nitrosamines are activated by a number of P450 enzymes. Of those known to be present in human liver, P4501A2, 2A6, and 2E1 can activate these nitrosamines to genotoxic products.
Resumo:
INTRODUCTION: The phase III FLEX study (NCT00148798) in advanced non-small-cell lung cancer indicated that the survival benefit associated with the addition of cetuximab to cisplatin and vinorelbine was limited to patients whose tumors expressed high levels of epidermal growth factor receptor (EGFR) (immunohistochemistry score of >/=200; scale 0-300). We assessed whether the treatment effect was also modulated in FLEX study patients by tumor EGFR mutation status. METHODS: A tumor mutation screen of EGFR exons 18 to 21 included 971 of 1125 (86%) FLEX study patients. Treatment outcome in low and high EGFR expression groups was analyzed across efficacy endpoints according to tumor EGFR mutation status. RESULTS: Mutations in EGFR exons 18 to 21 were detected in 133 of 971 tumors (14%), 970 of which were also evaluable for EGFR expression level. The most common mutations were exon 19 deletions and L858R (124 of 133 patients; 93%). In the high EGFR expression group (immunohistochemistry score of >/=200), a survival benefit for the addition of cetuximab to chemotherapy was demonstrated in patients with EGFR wild-type (including T790M mutant) tumors. Although patient numbers were small, those in the high EGFR expression group whose tumors carried EGFR mutations may also have derived a survival benefit from the addition of cetuximab to chemotherapy. Response data suggested a cetuximab benefit in the high EGFR expression group regardless of EGFR mutation status. CONCLUSIONS: The survival benefit associated with the addition of cetuximab to first-line chemotherapy for advanced non-small-cell lung cancer expressing high levels of EGFR is not limited by EGFR mutation status.
Resumo:
Australia has a significantly higher suicide rate than England. Rather than accepting that this ‘statistical fact’ is a direct reflection of some positivist truth, this paper begins with the premise that how suicide is counted depends upon what counts as suicide. This study involves semi-structured interviews with coroners both in Australia and England, as well as observations at inquests. Important differences between the two coronial systems include: first, quite different logics of operation; second, the burden of proof for reaching a finding of suicide is significantly higher in England; and third, the presence of family members at English inquests results in far greater pressure being brought to bear upon coroners. These combined factors result in a reduced likelihood of English coroners reaching a finding of suicide. The conclusions are twofold. First, this research supports existing criticisms of comparative suicide statistics. Second, this research adds theoretical weight to criticisms of positivist analyses of social phenomena.
Resumo:
Purpose Age-related changes in motion sensitivity have been found to relate to reductions in various indices of driving performance and safety. The aim of this study was to investigate the basis of this relationship in terms of determining which aspects of motion perception are most relevant to driving. Methods Participants included 61 regular drivers (age range 22–87 years). Visual performance was measured binocularly. Measures included visual acuity, contrast sensitivity and motion sensitivity assessed using four different approaches: (1) threshold minimum drift rate for a drifting Gabor patch, (2) Dmin from a random dot display, (3) threshold coherence from a random dot display, and (4) threshold drift rate for a second-order (contrast modulated) sinusoidal grating. Participants then completed the Hazard Perception Test (HPT) in which they were required to identify moving hazards in videos of real driving scenes, and also a Direction of Heading task (DOH) in which they identified deviations from normal lane keeping in brief videos of driving filmed from the interior of a vehicle. Results In bivariate correlation analyses, all motion sensitivity measures significantly declined with age. Motion coherence thresholds, and minimum drift rate threshold for the first-order stimulus (Gabor patch) both significantly predicted HPT performance even after controlling for age, visual acuity and contrast sensitivity. Bootstrap mediation analysis showed that individual differences in DOH accuracy partly explained these relationships, where those individuals with poorer motion sensitivity on the coherence and Gabor tests showed decreased ability to perceive deviations in motion in the driving videos, which related in turn to their ability to detect the moving hazards. Conclusions The ability to detect subtle movements in the driving environment (as determined by the DOH task) may be an important contributor to effective hazard perception, and is associated with age, and an individuals' performance on tests of motion sensitivity. The locus of the processing deficits appears to lie in first-order, rather than second-order motion pathways.