115 resultados para Modèle familial
Resumo:
This report describes a 32-year-old woman presenting since childhood with progressive calcium pyrophosphate disease (CPPD), characterized by severe arthropathy and chondrocalcinosis involving multiple peripheral joints and intervertebral disks. Because ANKH mutations have been previously described in familial CPPD, the proband's DNA was assessed at this locus by direct sequencing of promoter and coding regions and revealed 3 sequence variants in ANKH. Sequences of exon 1 revealed a novel isolated nonsynonymous mutation (c.13 C>T), altering amino acid in codon 5 from proline to serine (CCG>TCG). Sequencing of parental DNA revealed an identical mutation in the proband's father but not the mother. Subsequent clinical evaluation demonstrated extensive chondrocalcinosis and degenerative arthropathy in the proband's father. In summary, we report a novel mutation, not previously described, in ANKH exon 1, wherein serine replaces proline, in a case of early-onset severe CPPD associated with metabolic abnormalities, with similar findings in the proband's father.
Resumo:
Familial articular chondrocalcinosis (CC) was Wrst reported in 1963. It is characterised by multiple calciWcations of hyaline and Wbrous cartilage in the joints and intervertebral discs. Mutations in ANKH have been identified in several pedigrees as a monogenic cause for this disorder. ANKH is a key protein in pyrophosphate metabolism and is involved in pyrophosphate transport across the cell membrane. The objective of this work was to screen ANKH and ENPP1, two key genes in pyrophosphate metabolism, in Slovakian kindreds with familial CC. DNA samples from 25 individuals (10 aVected, 15 unaVected) from 8 families were obtained. The promoter, coding regions and intron-exon boundaries of ANKH and ENPP1 were sequenced. Twelve DNA sequence variants, six in each gene, were identiWed. All the variants had been previously identified. None segregated with the disease. Our results suggest that neither ANKH nor ENPP1 mutations are the cause of CC in these families, indicating that possibly other major genes are involved in the aethiopathogenesis of this condition in these families.
Resumo:
PURPOSE The restricted genetic diversity and homogeneous molecular basis of Mendelian disorders in isolated founder populations have rarely been explored in epilepsy research. Our long-term goal is to explore the genetic basis of epilepsies in one such population, the Gypsies. The aim of this report is the clinical and genetic characterization of a Gypsy family with a partial epilepsy syndrome. METHODS Clinical information was collected using semistructured interviews with affected subjects and informants. At least one interictal electroencephalography (EEG) recording was performed for each patient and previous data obtained from records. Neuroimaging included structural magnetic resonance imaging (MRI). Linkage and haplotype analysis was performed using the Illumina IVb Linkage Panel, supplemented with highly informative microsatellites in linked regions and Affymetrix SNP 5.0 array data. RESULTS We observed an early-onset partial epilepsy syndrome with seizure semiology strongly suggestive of temporal lobe epilepsy (TLE), with mild intellectual deficit co-occurring in a large proportion of the patients. Psychiatric morbidity was common in the extended pedigree but did not cosegregate with epilepsy. Linkage analysis definitively excluded previously reported loci, and identified a novel locus on 5q31.3-q32 with an logarithm of the odds (LOD) score of 3 corresponding to the expected maximum in this family. DISCUSSION The syndrome can be classified as familial temporal lobe epilepsy (FTLE) or possibly a new syndrome with mild intellectual deficit. The linked 5q region does not contain any ion channel-encoding genes and is thus likely to contribute new knowledge about epilepsy pathogenesis. Identification of the mutation in this family and in additional patients will define the full phenotypic spectrum.
Resumo:
Objectives. Extracellular inorganic pyrophosphate (ePPi) inhibits certain forms of pathological mineralization while promoting others. Three molecules involved in ePPi regulation are important candidates for the development of calcium pyrophosphate dihydrate chondrocalcinosis (CPPD CC). These include ANKH, ectonucleotide pyrophosphatase (ENPP1) and TNAP. We have previously showed that genetic variation in ANKH is a cause of autosomal dominant familial CC and also some sporadic cases of CPPD CC. We now investigate the possible role of ENPP1 and TNAP in CPPD CC. Methods. Exons, untranslated regions (UTR) and exon-intron boundaries of ENPP1 and TNAP were sequenced using ABI Big Dye chemistry on automated sequencers. Sixteen variants were identified (3 in ENPP1 and 13 in TNAP) and were subsequently genotyped in 128 sporadic Caucasian CPPD CC patients and 600 healthy controls using a combination of polymerase chain reaction/restriction fragment-length polymorphism analysis or using Taqman. Allele and genotype frequencies were compared between cases and controls using the χ 2 test. Linkage disequilibrium, haplotype and the single nucleotide polymorphism-specific analyses were also performed. This study had 80% power to detect an odds ratio of 2.2 or more at these loci. Results. No difference was observed in the allele or genotype frequencies between patients and controls at either ENPP1 or TNAP. Conclusions. Polymorphisms of ENPP1 and TNAP are not major determinants of susceptibility to CC in the population studied. Further studies of the aetiology of sporadic CPPD CC are required to determine its causes.
Resumo:
Osteoporosis is a common, increasingly prevalent and potentially debilitating condition of men and women. Genetic factors are major determinants of bone mass and the risk of fracture, but few genes have been definitively demonstrated to be involved. The identification of these factors will provide novel insights into the processes of bone formation and loss and thus the pathogenesis of osteoporosis, enabling the rational development of novel therapies. In this article, we present the extensive genetic and functional data indicating that the LRP5 gene and the Wnt signalling pathway are key players in bone formation and the risk of osteoporosis, and that LRP5 signalling is essential for normal morphology, developmental processes and bone health.
Resumo:
Objective. The heritability of disease activity and function in ankylosing spondylitis (AS) have been estimated at 0.51 and 0.63 (i.e., 51% and 63%), respectively. We examined the concordance of disease severity among family members in terms of disease activity, function, radiological change, prevalence of iritis, and juvenile onset. Methods. Disease activity and functional impairment due to AS were studied using the Bath AS Disease Activity Index (BASDAI) and Functional Index (BASFI) self-administered questionnaires; radiographic involvement was measured using the Bath AS Radiology Index (BASRI) scale. Familial correlation of BASDAI and BASFI was assessed in 406 families with 2 or more cases, using the program PAP. Parent-child and sibling-sibling concordance for iritis and juvenile AS were also studied in these families. Heritability of radiological disease severity based on the BASRI was assessed in 29 families containing 60 affected individuals using the program SOLAR. Results. Correlations between parent-child pairs for disease activity and function were 0.07 for both. Correlations between sibling pairs for disease activity and function were 0.27 and 0.36, respectively. The children of AS parents with iritis were more likely to develop iritis [27/71 (38%)] than children of non-iritis AS parents [13/70 (19%)] (p = 0.01). Parents with JAS were more likely to have children with JAS [17/30 (57%) compared to non-JAS parents 34/111 (30%)] (p = 0.002). The heritability of radiological disease severity based on the BASRI was 0.62. Conclusion. While correlation in severity between parent and child is poor, siblings do resemble each other in terms of severity, supporting the findings of segregation studies indicating significant genetic dominance in the heritable component of disease activity. Significant parent-child concordance for iritis and juvenile disease onset suggest that there are genetic risk factors for these traits independent of those determining the risk of AS itself. The finding of significant heritability of radiological change (BASRI) provides support using an objective measure for the observed heritability of the questionnaire-assessed disease severity scores, ASDAI and BASFI.
Resumo:
Sir The association between HLA‐B27 (B27) and ankylosing spondylitis (AS) has been known for 25 yr. Familial aggregation in AS is well established, and first‐degree relatives of AS patients have been shown to be at increased risk of developing the disease. The recurrence risk in siblings of AS patients is quite uncertain, previous studies have variously reported recurrence risks between 6.9 and 27% [1, 2]. Accurate knowledge of the sibling recurrence risk is important both to advise families of the likelihood of disease recurrence, and in genetic statistical analyses utilizing Risch's recurrence risk ratio [3]. This study was designed to determine the risk of developing AS in siblings and to determine the role of the major histocompatibility complex in familial recurrence of AS....
Resumo:
Ankylosing spondylitis (AS) is a common and highly familial rheumatic disorder. The sibling recurrence risk ratio for the disease is 63 and heritability assessed in twins > 90%. Although MHC genes, including HLA-B27, contribute only 20-50% of the genetic risk for the disease, no non-MHC gene has yet been convincingly demonstrated to influence either susceptibility to the disease or its phenotypic expression. Previous linkage and association studies have suggested the presence of a susceptibility gene for AS close to, or within, the cytochrome P450 2D6 gene (CYP2D6, debrisoquine hydroxylase) located at chromosome 22q13.1. We performed a linkage study of chromosome 22 in 200 families with AS affected sibling-pairs. Association of alleles of the CYP2D6 gene was examined by both case-control and within-family means. For case-control studies, 617 unrelated individuals with AS (361 probands from sibling-pair and parent-case trio families and 256 unrelated non-familial sporadic cases) and 402 healthy ethnically matched controls were employed. For within-family association studies, 361 families including 161 parent-case trios and 200 affected sibling-pair families were employed. Homozygosity for poor metabolizer alleles was found to be associated with AS. Heterozygosity for the most frequent poor metabolizer allele (CYP2D6*4) was not associated with increased susceptibility to AS. Significant within-family association of CYP2D6*4 alleles and AS was demonstrated. Weak linkage was also demonstrated between CYP2D6 and AS. We postulate that altered metabolism of a natural toxin or antigen by the CYP2D6 gene may increase susceptibility to AS.
Resumo:
Background Genome-wide association studies have identified multiple genetic variants associated with prostate cancer risk which explain a substantial proportion of familial relative risk. These variants can be used to stratify individuals by their risk of prostate cancer. Methods We genotyped 25 prostate cancer susceptibility loci in 40,414 individuals and derived a polygenic risk score (PRS).We estimated empirical odds ratios (OR) for prostate cancer associated with different risk strata defined by PRS and derived agespecific absolute risks of developing prostate cancer by PRS stratum and family history. Results The prostate cancer risk for men in the top 1% of the PRS distribution was 30.6 (95% CI, 16.4-57.3) fold compared with men in the bottom 1%, and 4.2 (95% CI, 3.2-5.5) fold compared with the median risk. The absolute risk of prostate cancer by age of 85 years was 65.8% for a man with family history in the top 1% of the PRS distribution, compared with 3.7% for a man in the bottom 1%. The PRS was only weakly correlated with serum PSA level (correlation = 0.09). Conclusions Risk profiling can identify men at substantially increased or reduced risk of prostate cancer. The effect size, measured by OR per unit PRS, was higher in men at younger ages and in men with family history of prostate cancer. Incorporating additional newly identified loci into a PRS should improve the predictive value of risk profiles. Impact:We demonstrate that the risk profiling based on SNPs can identify men at substantially increased or reduced risk that could have useful implications for targeted prevention and screening programs.
Resumo:
Genome-wide association studies (GWAS) have identified numerous common prostate cancer (PrCa) susceptibility loci. We have fine-mapped 64 GWAS regions known at the conclusion of the iCOGS study using large-scale genotyping and imputation in 25 723 PrCa cases and 26 274 controls of European ancestry. We detected evidence for multiple independent signals at 16 regions, 12 of which contained additional newly identified significant associations. A single signal comprising a spectrum of correlated variation was observed at 39 regions; 35 of which are now described by a novel more significantly associated lead SNP, while the originally reported variant remained as the lead SNP only in 4 regions. We also confirmed two association signals in Europeans that had been previously reported only in East-Asian GWAS. Based on statistical evidence and linkage disequilibrium (LD) structure, we have curated and narrowed down the list of the most likely candidate causal variants for each region. Functional annotation using data from ENCODE filtered for PrCa cell lines and eQTL analysis demonstrated significant enrichment for overlap with bio-features within this set. By incorporating the novel risk variants identified here alongside the refined data for existing association signals, we estimate that these loci now explain ∼38.9% of the familial relative risk of PrCa, an 8.9% improvement over the previously reported GWAS tag SNPs. This suggests that a significant fraction of the heritability of PrCa may have been hidden during the discovery phase of GWAS, in particular due to the presence of multiple independent signals within the same region.
Resumo:
Prostate cancer is the second most common malignancy among men worldwide. Genome-wide association studies have identified 100 risk variants for prostate cancer, which can explain approximately 33% of the familial risk of the disease. We hypothesized that a comprehensive analysis of genetic variations found within the 3' untranslated region of genes predicted to affect miRNA binding (miRSNP) can identify additional prostate cancer risk variants. We investigated the association between 2,169 miRSNPs and prostate cancer risk in a large-scale analysis of 22,301 cases and 22,320 controls of European ancestry from 23 participating studies. Twenty-two miRSNPs were associated (P<2.3×10(-5)) with risk of prostate cancer, 10 of which were within 7 genes previously not mapped by GWAS studies. Further, using miRNA mimics and reporter gene assays, we showed that miR-3162-5p has specific affinity for the KLK3 rs1058205 miRSNP T-allele, whereas miR-370 has greater affinity for the VAMP8 rs1010 miRSNP A-allele, validating their functional role. SIGNIFICANCE Findings from this large association study suggest that a focus on miRSNPs, including functional evaluation, can identify candidate risk loci below currently accepted statistical levels of genome-wide significance. Studies of miRNAs and their interactions with SNPs could provide further insights into the mechanisms of prostate cancer risk.
Resumo:
Introduction: Statins alone often do not reduce LDL cholesterol levels sufficiently to given maximum cardiovascular benefit. Thus, additional drugs are required to reduce the levels of LDL cholesterol. Monoclonal antibodies to PCSK9 have recently been shown to decrease LDL cholesterol, but it is not known whether they improve cardiovascular outcomes. Areas covered: Evaluation of two clinical trials reporting cardiovascular outcomes with antibodies to PCSK9; the OSLER extension with evolocumab and the ODYSSEY LONG TERM trial with alirocumab. Expert opinion: In OSLER and ODYSSEY LONG TERM, there were very few cardiovascular outcomes, but the trials do suggest that evolocumab and alirocumab may reduce these outcomes. However, there are also some safety concerns with both of these antibodies. Large clinical outcome trials are underway with both evolocumab and alirocumab, which will probably clarify both the safety concerns and any cardiovascular benefits with these antibodies. In our opinion, these antibodies may be suitable for use in subjects with familial hypercholesterolemia, who are uncontrolled with their present medications, provided intensive safety and cardiovascular monitoring is being undertaken. However, evolocumab and alirocumab should be used with caution in other subjects, until outcome studies in higher numbers of subjects, have shown acceptable safety and cardiovascular profiles.
Resumo:
Neglect of children is a significant social issue worldwide and is typically the most frequently reported form of maltreatment in Western nations, with its severe forms sometimes resulting in significant illness and disablement or death. Yet, paradoxically, it remains ‘neglected’ and largely in the shadow of physical and sexual abuse, often being viewed as less serious despite the real-life consequences of its insidious and compounding nature and the lasting damage it causes to intergenerational familial relationships and the life outcomes of those affected. This chapter explores the many complex forms of child neglect, its causes and impacts and the strategies to prevent it. In particular, a critical standpoint is taken in analysing the rationale and merits of mandatory reporting of neglect and their effects, systemically and for children.
Genome-wide linkage and association analyses implicate FASN in predisposition to Uterine Leiomyomata
Resumo:
Uterine leiomyomata (UL), the most prevalent pelvic tumors in women of reproductive age, pose a major public health problem given their high frequency, associated morbidities, and most common indication for hysterectomies. A genetic component to UL predisposition is supported by analyses of ethnic predisposition, twin studies, and familial aggregation. A genome-wide SNP linkage panel was genotyped and analyzed in 261 white UL-affected sister-pair families from the Finding Genes for Fibroids study. Two significant linkage regions were detected in 10p11 (LOD = 4.15) and 3p21 (LOD = 3.73), and five additional linkage regions were identified with LOD scores > 2.00 in 2q37, 5p13, 11p15, 12q14, and 17q25. Genome-wide association studies were performed in two independent cohorts of white women, and a meta-analysis was conducted. One SNP (rs4247357) was identified with a p value (p = 3.05 x 10(-8)) that reached genome-wide significance (odds ratio = 1.299). The candidate SNP is under a linkage peak and in a block of linkage disequilibrium in 17q25.3, which spans fatty acid synthase (FASN), coiled-coil-domain-containing 57 (CCDC57), and solute-carrier family 16, member 3 (SLC16A3). By tissue microarray immunohistochemistry, we found elevated (3-fold) FAS levels in UL-affected tissue compared to matched myometrial tissue. FAS transcripts and/or protein levels are upregulated in various neoplasms and implicated in tumor cell survival. FASN represents the initial UL risk allele identified in white women by a genome-wide, unbiased approach and opens a path to management and potential therapeutic intervention.
Resumo:
BACKGROUND: The tendency to conceive dizygotic (DZ) twins is a complex trait influenced by genetic and environmental factors. To search for new candidate loci for twinning, we conducted a genome-wide linkage scan in 525 families using microsatellite and single nucleotide polymorphism marker panels. METHODS AND RESULTS: Non-parametric linkage analyses, including 523 families containing a total of 1115 mothers of DZ twins (MODZT) from Australia and New Zealand (ANZ) and The Netherlands (NL), produced four linkage peaks above the threshold for suggestive linkage, including a highly suggestive peak at the extreme telomeric end of chromosome 6 with an exponential logarithm of odds \[(exp)LOD] score of 2.813 (P = 0.0002). Since the DZ twinning rate increases steeply with maternal age independent of genetic effects, we also investigated linkage including only families where at least one MODZT gave birth to her first set of twins before the age of 30. These analyses produced a maximum expLOD score of 2.718 (P = 0.0002), largely due to linkage signal from the ANZ cohort, however, ordered subset analyses indicated this result is most likely a chance finding in the combined dataset. Linkage analyses were also performed for two large DZ twinning families from the USA, one of which produced a peak on chromosome 2 in the region of two potential candidate genes. Sequencing of FSHR and FIGLA, along with INHBB in MODZTs from two large NL families with family specific linkage peaks directly over this gene, revealed a potentially functional variant in the 5' untranslated region of FSHR that segregated with the DZ twinning phenotype in the Utah family. CONCLUSION: Our data provide further evidence for complex inheritance of familial DZ twinning.