166 resultados para Milan (Italy)--Buildings
Resumo:
Despite its role in determining both indoor and outdoor human exposure to anthropogenic particles, there is limited information describing vertical profiles of particle concentrations in urban environments, especially for ultrafine particles. Furthermore, the results of the few studies performed have been inconsistent. As such, this study aimed to assess the influence of vehicle emissions and nucleation formation on particle characteristics (particle number size distribution-PNSD and PM 2.5 concentration) at different heights around three urban office buildings located next to busy roads in Brisbane, Australia, and place these results in the broader context of the existing literature. Two sets of instruments were used to simultaneously measure PNSD, particle number (PN) and PM 2.5 concentrations, respectively, for up to three weeks at each building. The results showed that both PNSD and PM 2.5 concentration around building envelopes were influenced by vehicle emissions and new particle formation, and that they exhibited variability across the three different office buildings. During nucleation events, PN concentration in size range of <30 nm and total PN concentration increased (7-65% and 5-46%, respectively), while PM 2.5 concentration decreased (36-52%) with height. This study has shown an under acknowledged role for nucleation in producing particles that can affect large numbers of people, due to the high density and occupancy of urban office buildings and the fact that the vast majority of people's time is spent indoors. These findings highlight important new information related to the previously overlooked role of particle formation in the urban atmosphere and its potential effects on selection of air intake locations and appropriate filter types when designing or upgrading mechanical ventilation systems in urban office buildings. The results also serve to better define particle behaviour and variability around building envelopes, which has implications for studies of both human exposure and particle dynamics. © 2012 Author(s).
Resumo:
Exposure to ultrafine particles (diameter less than 100 nm) is an important topic in epidemiological and toxicological studies. This study used the average particle number size distribution data obtained from our measurement survey in major micro-environments, together with the people activity pattern data obtained from the Italian Human Activity Pattern Survey to estimate the tracheobronchial and alveolar dose of submicrometer particles for different population age groups in Italy. We developed a numerical methodology based on Monte Carlo method, in order to estimate the best combination from a probabilistic point of view. More than 106 different cases were analyzed according to a purpose built sub-routine and our results showed that the daily alveolar particle number and surface area deposited for all of the age groups considered was equal to 1.5 x 1011 particles and 2.5 x 1015 m2, respectively, varying slightly for males and females living in Northern or Southern Italy. In terms of tracheobronchial deposition, the corresponding values for daily particle number and surface area for all age groups was equal to 6.5 x 1010 particles and 9.9 x 1014 m2, respectively. Overall, the highest contributions were found to come from indoor cooking (female), working time (male) and transportation (i.e. traffic derived particles) (children).
Resumo:
Vertical vegetation is vegetation growing on, or adjacent to, the unused sunlit exterior surfaces of buildings in cities. Vertical vegetation can improve the energy efficiency of the building on which it is installed mainly by insulating, shading and transpiring moisture from foliage and substrate. Several design parameters may affect the extent of the vertical vegetation's improvement of energy performance. Examples are choice of vegetation, growing medium geometry, north/south aspect and others. The purpose of this study is to quantitatively map out the contribution of several parameters to energy savings in a subtropical setting. The method is thermal simulation based on EnergyPlus configured to reflect the special characteristics of vertical vegetation. Thermal simulation results show that yearly cooling energy savings can reach 25% with realistic design choices in subtropical environments. Heating energy savings are negligible. The most important parameter is the aspect of walls covered by vegetation. Vertical vegetation covering walls facing north (south for the northern hemisphere) will result in the highest energy savings. In making plant selections, the most significant parameter is Leaf Area Index (LAI). Plants with larger LAI, preferably LAI>4, contribute to greater savings whereas vertical vegetation with LAI<2 can actually consume energy. The choice of growing media and its thickness influence both heating and cooling energy consumption. Change of growing medium thickness from 6cm to 8cm causes dramatic increase in energy savings from 2% to 18%. For cooling, it is best to use a growing material with high water retention, due to the importance of evapotranspiration for cooling. Similarly, for increased savings in cooling energy, sufficient irrigation is required. Insufficient irrigation results in the vertical vegetation requiring more energy to cool the building. To conclude, the choice of design parameters for vertical vegetation is crucial in making sure that it contributes to energy savings rather than energy consumption. Optimal design decisions can create a dramatic sustainability enhancement for the built environment in subtropical climates.
Resumo:
Columns and walls in buildings are subjected to a number of load increments during the construction and service stages. The combination of these load increments and poor quality construction can cause defects in these structural components. In addition, defects can also occur due to accidental or deliberate actions by users of the building during construction and service stages. Such defects should be detected early so that remedial measures can be taken to improve life time serviceability and performance of the building. This paper uses micro and macro model upgrading methods during construction and service stages of a building based on the mass and stiffness changes to develop a comprehensive procedure for locating and detecting defects in columns and walls of buildings. Capabilities of the procedure are illustrated through examples.
Resumo:
In order to promote green building practice in Australia, the Green Building Council of Australia (GBCA) launched the Green Star rating tools for various types of buildings built since 2003. Of these, the Green Star-Education rating tool addresses sustainability issues during the design and construction phrases of education facility development. It covers a number of categories, including Management, Indoor Environment Quality, Energy, Transport, Water, Materials, Land Use & Ecology, Emissions and Innovation. This paper reviews the use of the Green Star system in Australian education facilities construction and the potential challenges associated with Green Star- Education implementation. Score sheets of 34 education projects across Australia that achieved Green Star certification were collected and analysed. The percentage of green star points obtained within each category and sub-category (credits) for each project were analysed to illustrate the achievement of credits. The results show that management-related credits and ecology-related credits are the easiest and most difficult to obtain respectively. The study also indicted that 6 Green Star education projects obtained particularly high percentages in the Innovation category. The investigation of points obtained in each category provides prospective Green Star applicants with insights into credit achievement for future projects.
Resumo:
Crop simulation models have the potential to assess the risk associated with the selection of a specific N fertilizer rate, by integrating the effects of soil-crop interactions on crop growth under different pedo-climatic and management conditions. The objective of this study was to simulate the environmental and economic impact (nitrate leaching and N2O emissions) of a spatially variable N fertilizer application in an irrigated maize field in Italy. The validated SALUS model was run with 5 nitrogen rates scenarios, 50, 100, 150, 200, and 250 kg N ha−1, with the latter being the N fertilization adopted by the farmer. The long-term (25 years) simulations were performed on two previously identified spatially and temporally stable zones, a high yielding and low yielding zone. The simulation results showed that N fertilizer rate can be reduced without affecting yield and net return. The marginal net return was on average higher for the high yield zone, with values ranging from 1550 to 2650 € ha−1 for the 200 N and 1485 to 2875 € ha−1 for the 250 N. N leaching varied between 16.4 and 19.3 kg N ha−1 for the 200 N and the 250 N in the high yield zone. In the low yield zone, the 250 N had a significantly higher N leaching. N2O emissions varied between 0.28 kg N2O ha−1 for the 50 kg N ha−1 rate to a maximum of 1.41 kg N2O ha−1 for the 250 kg N ha−1 rate.
Resumo:
Daring human nature has already led to the construction of high-rise buildings in naturally challenging geological regions and in worse environments of the world. However; literature review divulges that there is a lag in research of certain generic principles and rules for the prediction of lateral movement in multistorey construction. The present competitive trend orders the best possible used of available construction material and resources. Hence; the mixed used of reinforced concrete with structural steel is gaining prevalence day by day. This paper investigates the effects of Seismic load on composite multistorey building provided with core wall and trusses through FEM modelling. The results showed that increased rigidity corresponds to lower period of vibration and hence higher seismic forces. Since Seismic action is a function of mass and response acceleration, therefore; mass increment generate higher earthquake load and thus cause higher impact base shear and overturning movement. Whereas; wind force depends on building exposed, larger the plan dimension greater is the wind impact. Nonetheless; outriggers trusses noticeably contribute, in improving the serviceability of structure subjected to wind and earthquake forces.
Resumo:
Potential adverse effects on children health may result from school exposure to airborne particles. To address this issue, measurements in terms of particle number concentration, particle size distribution and black carbon (BC) concentrations were performed in three school buildings in Cassino (Italy) and its suburbs, outside and inside of the classrooms during normal occupancy and use. Additional time resolved information was gathered on ventilation condition, classroom activity, and traffic count data around the schools were obtained using a video camera. Across the three investigated school buildings, the outdoor and indoor particle number concentration monitored down to 4 nm and up to 3 m ranged from 2.8×104 part cm-3 to 4.7×104 part cm-3 and from 2.0×104 part cm-3 to 3.5×104 part cm-3, respectively. The total particle concentrations were usually higher outdoors than indoors, because no indoor sources were detected. I/O measured was less than 1 (varying in a relatively narrow range from 0.63 to 0.74), however one school exhibited indoor concentrations higher than outdoor during the morning rush hours. Particle size distribution at the outdoor site showed high particle concentrations in different size ranges, varying during the day; in relation to the starting and finishing of school time two modes were found. BC concentrations were 5 times higher at the urban school compared with the suburban and suburban-to-urban differences were larger than the relative differences of ultrafine particle concentrations.
Resumo:
With significant population growth experienced in South East Queensland over the past two decades and a high rate of growth expected to continue in coming decades, the Queensland Government is promoting urban consolidation planning policies to manage growth sustainably. Multi-residential buildings will play an important role in facilitating the increased densities which urban consolidation policies imply. However, a major flood event in January 2011 has brought to light the vulnerability of certain types of multi-residential typologies to power outages. The crisis conditions exposed how contemporary building design and construction practices, coupled with regulatory and planning issues, appear to have compromised the resilience and habitability of multi-storey residential buildings. In the greater urban area of Brisbane, Queensland, the debilitating dependence that certain types of apartment buildings have on mains electricity was highlighted by residents’ experiences of the Brisbane River flood disaster, before, during and after the event. This research examined high density residential buildings in West End, Brisbane, an inner city suburb which was severely affected by the flood and is earmarked for significant urban densification under the Brisbane City Plan. Medium-to-high-density residential buildings in the suburb were mapped in flooded and non-flooded locations and a database containing information about the buildings was created. Parameters included date of construction, number of storeys, systems of access and circulation, and potential for access to natural light and ventilation for habitable areas. A series of semi-structured interviews were conducted with residents involved in the owners’ management committees of several buildings to verify information the mapping could not provide. The interviews identified a number of critical systems failures due to power outage which had a significant impact on residents’ wellbeing, comfort and safety. Building services such as lifts, running water, fire alarms, security systems and air-conditioning ceased to operate when power was disconnected to neighbourhoods and buildings in anticipation of rising flood waters. Lack of access to buildings and dwellings, lack of safety, lack of building security, and lack of thermal comfort affected many residents whether or not their buildings were actually subjected to inundation, with some buildings rendered uninhabitable for a prolonged period. The extent of the impact on residents was dramatically influenced by the scale and type of building inhabited, with those dwelling in buildings under a 25m height limit, with a single lift, found to be most affected. The energy-dependency and strong trend of increasing power demands of high-rise buildings is well-documented. Extended electricity outages such as the one brought about by the 2011 flood in Queensland are likely to happen more frequently than the 50-year average of the flood event itself. Electricity blackouts can result from a number of man-made or natural causes, including shortages caused by demand exceeding supply. This paper highlights the vulnerability of energy-dependent buildings to power outages and investigates options for energy security for occupants of multi-storey buildings and makes recommendations to increase resilience and general liveability in multi-residential buildings in the subtropics through design modifications.
Resumo:
Buildings are key mediators between human activity and the environment around them, but details of energy usage and activity in buildings is often poorly communicated and understood. ECOS is an Eco-Visualization project that aims to contextualize the energy generation and consumption of a green building in a variety of different climates. The ECOS project is being developed for a large public interactive space installed in the new Science and Engineering Centre of the Queensland University of Technology that is dedicated to delivering interactive science education content to the public. This paper focuses on how design can develop ICT solutions from large data sets to create meaningful engagement with environmental data.
Resumo:
A new decision-making tool that will assist designers in the selection of appropriate daylighting solutions for buildings in tropical locations has been previously proposed by the authors. Through an evaluation matrix that prioritizes the parameters that best respond to the needs of tropical climates (e.g. reducing solar gain and protection from glare) the tool determines the most appropriate devices for specific climate and building inputs. The tool is effective in demonstrating the broad benefits and limitations of the different daylight strategies for buildings in the tropics. However for thorough analysis and calibration of the tool, validation is necessary. This paper presents a first step in the validation process. RADIANCE simulations were conducted to compare simulation performance with the performance predicted by the tool. To this end, an office building case study in subtropical Brisbane, Australia, and five different daylighting devices including openings, light guiding systems and light transport systems were simulated. Illuminance, light uniformity, daylight penetration and glare analysis were assessed for each device. The results indicate the tool can appropriately rank and recommend daylighting strategies based on specific building inputs for tropical and subtropical regions, making it a useful resource for designers.
Resumo:
Epidemiological research has consistently shown an association between fine and ultrafine particle concentrations, and increases in both respiratory and cardiovascular morbidity and mortality. These particles, often found in vehicle emissions outside buildings, can penetrate inside via their envelopes and mechanically ventilated systems. Indoor activities such as printing, cooking and cleaning, as well as the movement of building occupants are also an additional source of these particles. In this context, the filtration systems of mechanically ventilated buildings can reduce indoor particle concentrations. Several studies have quantified the efficiency of dry-media and electrostatic filters, but they mainly focused on the particle size range > 300 nm. Some others studied ultrafine particles but their investigations were conducted in laboratories. At this point, there is still only limited information on in situ filter efficiency and an incomplete understanding of filtration influence on I/O ratios of particle concentrations. To help address these gaps in knowledge and provide new information for the selection of appropriate filter types in office building HVAC systems, we aimed to: (1) measure particle concentrations at up and down stream flows of filter devices, as well as outdoor and indoor office buildings; (2) quantify efficiency of different filter types at different buildings; and (3) assess the impact of these filters on I/O ratios at different indoor and outdoor source operation scenarios.