200 resultados para Mid-infrared lasers


Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is a need for an accurate real-time quantitative system that would enhance decision-making in the treatment of osteoarthritis. To achieve this objective, significant research is required that will enable articular cartilage properties to be measured and categorized for health and functionality without the need for laboratory tests involving biopsies for pathological evaluation. Such a system would provide the capability of access to the internal condition of the cartilage matrix and thus extend the vision-based arthroscopy that is currently used beyond the subjective evaluation of surgeons. The system required must be able to non-destructively probe the entire thickness of the cartilage and its immediate subchondral bone layer. In this thesis, near infrared spectroscopy is investigated for the purpose mentioned above. The aim is to relate it to the structure and load bearing properties of the cartilage matrix to the near infrared absorption spectrum and establish functional relationships that will provide objective, quantitative and repeatable categorization of cartilage condition outside the area of visible degradation in a joint. Based on results from traditional mechanical testing, their innovative interpretation and relationship with spectroscopic data, new parameters were developed. These were then evaluated for their consistency in discriminating between healthy viable and degraded cartilage. The mechanical and physico-chemical properties were related to specific regions of the near infrared absorption spectrum that were identified as part of the research conducted for this thesis. The relationships between the tissue's near infrared spectral response and the new parameters were modeled using multivariate statistical techniques based on partial least squares regression (PLSR). With significantly high levels of statistical correlation, the modeled relationships were demonstrated to possess considerable potential in predicting the properties of unknown tissue samples in a quick and non-destructive manner. In order to adapt near infrared spectroscopy for clinical applications, a balance between probe diameter and the number of active transmit-receive optic fibres must be optimized. This was achieved in the course of this research, resulting in an optimal probe configuration that could be adapted for joint tissue evaluation. Furthermore, as a proof-of-concept, a protocol for obtaining the new parameters from the near infrared absorption spectra of cartilage was developed and implemented in a graphical user interface (GUI)-based software, and used to assess cartilage-on-bone samples in vitro. This conceptual implementation has been demonstrated, in part by the individual parametric relationship with the near infrared absorption spectrum, the capacity of the proposed system to facilitate real-time, non-destructive evaluation of cartilage matrix integrity. In summary, the potential of the optical near infrared spectroscopy for evaluating articular cartilage and bone laminate has been demonstrated in this thesis. The approach could have a spin-off for other soft tissues and organs of the body. It builds on the earlier work of the group at QUT, enhancing the near infrared component of the ongoing research on developing a tool for cartilage evaluation that goes beyond visual and subjective methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermal-infrared imagery is relatively robust to many of the failure conditions of visual and laser-based SLAM systems, such as fog, dust and smoke. The ability to use thermal-infrared video for localization is therefore highly appealing for many applications. However, operating in thermal-infrared is beyond the capacity of existing SLAM implementations. This paper presents the first known monocular SLAM system designed and tested for hand-held use in the thermal-infrared modality. The implementation includes a flexible feature detection layer able to achieve robust feature tracking in high-noise, low-texture thermal images. A novel approach for structure initialization is also presented. The system is robust to irregular motion and capable of handling the unique mechanical shutter interruptions common to thermal-infrared cameras. The evaluation demonstrates promising performance of the algorithm in several environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and Objectives Laser tissue repair usually relies on hemoderivate protein solders, based on serum albumin. These solders have intrinsic limitations that impair their widespread use, such as limited tensile strength of repaired tissue, poor solder solubility, and brittleness prior to laser denaturation. Furthermore, the required activation temperature of albumin solders (between 65 and 70°C) can induce significant thermal damage to tissue. In this study, we report on the design of a new polysaccharide adhesive for tissue repair that overcomes some of the shortcomings of traditional solders. Study Design/Materials and Methods Flexible and insoluble strips of chitosan adhesive (elastic modulus ~6.8 Mpa, surface area ~34 mm2, thickness ~20 µm) were bonded onto rectangular sections of sheep intestine using a diode laser (continuous mode, 120 ± 10 mW, = λ 808 nm) through a multimode optical fiber with an irradiance of ~15 W/cm2. The adhesive was based on chitosan and also included indocyanin green dye (IG). The temperature between tissue and adhesive was measured using a small thermocouple (diameter ~0.25 mm) during laser irradiation. The repaired tissue was tested for tensile strength by a calibrated tensiometer. Murine fibroblasts were cultured in extracted media from chitosan adhesive to assess cytotoxicity via cell growth inhibition in a 48 hours period. Results Chitosan adhesive successfully repaired intestine tissue, achieving a tensile strength of 14.7 ± 4.7 kPa (mean ± SD, n = 30) at a temperature of 60-65°C. Media extracted from chitosan adhesive showed negligible toxicity to fibroblast cells under the culture conditions examined here. Conclusion A novel chitosan-based adhesive has been developed, which is insoluble, flexible, and adheres firmly to tissue upon infrared laser activation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An important component of current models for interstellar and circumstellar evolution is the infrared (IR)spectral data collected from stellar outflows around oxygen-rich stars and from the general interstellar medium [1]. IR spectra from these celestial bodies are usually interpreted as showing the general properties of sub-micron sized silicate grains [2]. Two major features at 10 and 20 microns are reasonably attributed to amorphous olivine or pyroxene (e.g. Mg2Si04 or MgSi03) on the basis of comparisons with natural standards and vapor condensed silicates [3-6]. In an attempt to define crystallisation rates for spectrally amorphous condensates, Nuth and Donn [5] annealed experimentally produced amorphous magnesium silicate smokes at 1000K. On analysing these smokes at various annealing times, Nuth and Donn [5] showed that changes in crystallinity measured by bulk X-ray diffraction occured at longer annealing times (days) than changes measured by IR spectra (a few hours). To better define the onset of crystallinity in these magnesium silicates, we have examined each annealed product using a JEOL 1OOCX analytical electron microscope (AEM). In addition, the development of chemical diversity with annealing has been monitored using energy dispersive spectroscopy of individual grains from areas <20nm in diameter. Furthermore, the crystallisation kinetics of these smokes under ambient, room temperature conditions have been examined using bulk and fourier transform infrared (FTIR)spectra.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimentally obtained Mg.SiO smokes were studied by analytical electron microscopy using the same samples that had been previously characterized by repeated infrared spectroscopy. Analytical electron microscopy shows that unannealed smokes contain some degree of microcrystallinity which increases with increased annealing for up to 30 hr. An SiO2 polymorph (tridymite) and MgO may form contemporaneously as a result of growth of forsterite (Mg2SiO4) microcrystallites in the initially nonstoichiometric smokes. After 4 hr annealing, forsterite and tridymite react to enstatite (MgSiO3). We suggest that infrared spectroscopy and X-ray diffraction analysis should be complemented by detailed analytical electron microscopy to detect budding crystallinity in vapor phase condensates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this paper is to examine the association between a range of objectively measured neighbourhood features and the likelihood of mid-aged adults walking for transport. Increased walking for transport would bring multiple benefits, including improved population and environmental health. As part of the baseline HABITAT study, 10,745 residents of Brisbane, Australia, aged 40–65 years, from 200 neighbourhoods were asked about the time they spent walking for transport. Walking data were collected by mail survey and the physical environmental features of neighbourhoods were compiled using a geographic information systems database. Walking for transport was categorised into four levels and the association between walking and each neighbourhood characteristic was examined using multilevel multinomial models. A number of threshold trends were evident; for example, off-road bikeways were consistently associated with walking between 60 and 150 min per week. Living within 500 m of public transit was also an important predictor but only for those who walked for less than 150 min per week. Interventions targeting these neighbourhood characteristics may lead to improved environmental quality, lower rates of overweight and obesity and associated chromic disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this research, we have used vibrational spectroscopy to study the phosphate mineral kosnarite KZr2(PO4)3. Interest in this mineral rests with the ability of zirconium phosphates (ZP) to lock in radioactive elements. ZP have the capacity to concentrate and immobilize the actinide fraction of radioactive phases in homogeneous zirconium phosphate phases. The Raman spectrum of kosnarite is characterized by a very intense band at 1,026 cm−1 assigned to the symmetric stretching vibration of the PO4 3− ν1 symmetric stretching vibration. The series of bands at 561, 595 and 638 cm−1 are assigned to the ν4 out-of-plane bending modes of the PO4 3− units. The intense band at 437 cm−1 with other bands of lower wavenumber at 387, 405 and 421 cm−1 is assigned to the ν2 in-plane bending modes of the PO4 3− units. The number of bands in the antisymmetric stretching region supports the concept that the symmetry of the phosphate anion in the kosnarite structure is preserved. The width of the infrared spectral profile and its complexity in contrast to the well-resolved Raman spectrum show that the pegmatitic phosphates are better studied with Raman spectroscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mineral beryllonite has been characterized by the combination of Raman spectroscopy and infrared spectroscopy. SEM–EDX was used for the chemical analysis of the mineral. The intense sharp Raman band at 1011 cm-1, was assigned to the phosphate symmetric stretching mode. Raman bands at 1046, 1053, 1068 and the low intensity bands at 1147, 1160 and 1175 cm-1 are attributed to the phosphate antisymmetric stretching vibrations. The number of bands in the antisymmetric stretching region supports the concept of symmetry reduction of the phosphate anion in the beryllonite structure. This concept is supported by the number of bands found in the out-of-plane bending region. Multiple bands are also found in the in-plane bending region with Raman bands at 399, 418, 431 and 466 cm-1. Strong Raman bands at 304 and 354 cm-1 are attributed to metal oxygen vibrations. Vibrational spectroscopy served to determine the molecular structure of the mineral. The pegmatitic phosphate minerals such as beryllonite are more readily studied by Raman spectroscopy than infrared spectroscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Detailed investigation of an intermediate member of the reddingite–phosphoferrite series, using infrared and Raman spectroscopy, scanning electron microcopy and electron microprobe analysis, has been carried out on a homogeneous sample from a lithium-bearing pegmatite named Cigana mine, near Conselheiro Pena, Minas Gerais, Brazil. The determined formula is (Mn1.60Fe1.21Ca0.01Mg0.01)∑2.83(PO4)2.12⋅(H2O2.85F0.01)∑2.86 indicating predominance in the reddingite member. Raman spectroscopy coupled with infrared spectroscopy supports the concept of phosphate, hydrogen phosphate and dihydrogen phosphate units in the structure of reddingite-phosphoferrite. Infrared and Raman bands attributed to water and hydroxyl stretching modes are identified. Vibrational spectroscopy adds useful information to the molecular structure of reddingite–phosphoferrite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Determining the properties and integrity of subchondral bone in the developmental stages of osteoarthritis, especially in a form that can facilitate real-time characterization for diagnostic and decision-making purposes, is still a matter for research and development. This paper presents relationships between near infrared absorption spectra and properties of subchondral bone obtained from 3 models of osteoarthritic degeneration induced in laboratory rats via: (i) menisectomy (MSX); (ii) anterior cruciate ligament transaction (ACL); and (iii) intra-articular injection of mono-ido-acetate (1 mg) (MIA), in the right knee joint, with 12 rats per model group (N = 36). After 8 weeks, the animals were sacrificed and knee joints were collected. A custom-made diffuse reflectance NIR probe of diameter 5 mm was placed on the tibial surface and spectral data were acquired from each specimen in the wavenumber range 4000–12 500 cm− 1. After spectral acquisition, micro computed tomography (micro-CT) was performed on the samples and subchondral bone parameters namely: bone volume (BV) and bone mineral density (BMD) were extracted from the micro-CT data. Statistical correlation was then conducted between these parameters and regions of the near infrared spectra using multivariate techniques including principal component analysis (PCA), discriminant analysis (DA), and partial least squares (PLS) regression. Statistically significant linear correlations were found between the near infrared absorption spectra and subchondral bone BMD (R2 = 98.84%) and BV (R2 = 97.87%). In conclusion, near infrared spectroscopic probing can be used to detect, qualify and quantify changes in the composition of the subchondral bone, and could potentially assist in distinguishing healthy from OA bone as demonstrated with our laboratory rat models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Infrared spectroscopy has been used to characterize and compare four palygorskite mineral samples from China. The position of the main bands identified by infrared spectra is similar, but there are some differences in intensity, which are significant. In addition, several additional bands are observed in the spectra of palygorskite and their impurities. This variability is attributed to differences in the geological environment, such as the degree of weathering and the extent of transportation of the minerals during formation or deposition, and the impurity content in these palygorskites. The bands of water and hydroxyl groups in these spectra of palygorskite samples have been studied. The characteristic band of palygorskite is observed at 1195 cm�1. Another four bands observed at 3480, 3380, 3266 and 3190 cm�1 are attributed to the water molecules in the palygorskite structure. These results suggest that the infrared spectra of palygorskites mineral from different regions are decided not only by the main physicochemical properties of palygorskite, but also by the amount and kind of impurities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current diagnostic methods for assessing the severity of articular cartilage degenerative conditions, such as osteoarthritis, are inadequate. There is also a lack of techniques that can be used for real-time evaluation of the tissue during surgery to inform treatment decision and eliminate subjectivity. This book, derived from Dr Afara’s doctoral research, presents a scientific framework that is based on near infrared (NIR) spectroscopy for facilitating the non-destructive evaluation of articular cartilage health relative to its structural, functional, and mechanical properties. This development is a component of the ongoing research on advanced endoscopic diagnostic techniques in the Articular Cartilage Biomechanics Research Laboratory of Professor Adekunle Oloyede at Queensland University of Technology (QUT), Brisbane Australia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the link between tectonic-driven extensional faulting and volcanism is crucial from a hazard perspective in active volcanic environments, while ancient volcanic successions provide records on how volcanic eruption styles, compositions, magnitudes and frequencies can change in response to extension timing, distribution and intensity. Significantly, incorrect tectonic interpretations can be made when the spatial-temporal-compositional trends of, and source contributions to magmatism are not properly considered. This study draws on intimate relationships of volcanism and extension preserved in the Sierra Madre Occidental (SMO) and Gulf of California (GoC) regions of western Mexico. Here, a major Oligocene rhyolitic ignimbrite “flare-up” (>300,000 km3) switched to a dominantly bimodal and mixed effusive-explosive volcanic phase in the Early Miocene (~100,000 km3), associated with distributed extension and opening of numerous grabens. Rhyolitic dome fields were emplaced along graben edges and at intersections of cross-graben and graben-parallel structures during early stages of graben development. Concomitant with this change in rhyolite eruption style was a change in crustal source as revealed by zircon chronochemistry with rapid rates of rhyolite magma generation due to remelting of mid- to upper crustal, highly differentiated igneous rocks emplaced during earlier SMO magmatism. Extension became more focused ~18 Ma resulting in volcanic activity being localised along the site of GoC opening. This localised volcanism (known as the Comondú “arc”) was dominantly effusive and andesite-dacite in composition. This compositional change resulted from increased mixing of basaltic and rhyolitic magmas rather than fluid flux melting of the mantle wedge above the subducting Guadalupe Plate. A poor understanding of space-time relationships of volcanism and extension has thus led to incorrect past tectonic interpretations of Comondú-age volcanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Early–mid Cretaceous marks the confluence of three major continental-scale events in eastern Gondwana: (1) the emplacement of a Silicic Large Igneous Province (LIP) near the continental margin; (2) the volcaniclastic fill, transgression and regression of a major epicontinental seaway developed over at least a quarter of the Australian continent; and (3) epeirogenic uplift, exhumation and continental rupturing culminating in the opening of the Tasman Basin c. 84 Ma. The Whitsunday Silicic LIP event had widespread impact, producing both substantial extrusive volumes of dominantly silicic pyroclastic material and coeval first-cycle volcanogenic sediment that accumulated within many eastern Australian sedimentary basins, and principally in the Great Australian Basin system (>2 Mkm3 combined volume). The final pulse of volcanism and volcanogenic sedimentation at c. 105–95 Ma coincided with epicontinental seaway regression, which shows a lack of correspondence with the global sea-level curve, and alternatively records a wider, continental-scale effect of volcanism and rift tectonism. Widespread igneous underplating related to this LIP event is evident from high paleogeothermal gradients and regional hydrothermal fluid flow detectable in the shallow crust and over a broad region. Enhanced CO2 fluxing through sedimentary basins also records indirectly, large-scale, LIP-related mafic underplating. A discrete episode of rapid crustal cooling and exhumation began c. 100–90 Ma along the length of the eastern Australian margin, related to an enhanced phase of continental rifting that was largely amagmatic, and probably a switch from wide–more narrow rift modes. Along-margin variations in detachment fault architecture produced narrow (SE Australia) and wide continental margins with marginal, submerged continental plateaux (NE Australia). Long-lived NE-trending cross-orogen lineaments controlled the switch from narrow to wide continental margin geometries.