119 resultados para Mass-consistent model
Resumo:
RATIONALE Diseases including cancer and congenital disorders of glycosylation have been associated with changes in the site-specific extent of protein glycosylation. Saliva can be non-invasively sampled and is rich in glycoproteins, giving it the potential to be a useful biofluid for the discovery and detection of disease biomarkers associated with changes in glycosylation. METHODS Saliva was collected from healthy individuals and glycoproteins were enriched using phenylboronic acid based glycoprotein enrichment resin. Proteins were deglycosylated with peptide-N-glycosidase F and digested with AspN or trypsin. Desalted peptides and deglycosylated peptides were separated by reversed-phase liquid chromatography and detected with on-line electrospray ionization quadrupole-time-of-flight mass spectrometry using a 5600 TripleTof instrument. Site-specific glycosylation occupancy was semi-quantitatively determined from the abundance of deglycosylated and nonglycosylated versions of each given peptide. RESULTS Glycoprotein enrichment identified 67 independent glycosylation sites from 24 unique proteins, a 3.9-fold increase in the number of glycosylation sites identified. Enrichment of glycoproteins rather than glycopeptides allowed detection of both deglycosylated and nonglycosylated versions of each peptide, and thereby robust measurement of site-specific occupancy at 21 asparagines. Healthy individuals showed limited biological variability in occupancy, with partially modified sites having characteristics consistent with inefficient glycosylation by oligosaccharyltransferase. Inclusion of negative controls without enzymatic deglycosylation controlled for spontaneous chemical deamidation, and identified asparagines previously incorrectly annotated as glycosylated. CONCLUSIONS We developed a sample preparation and mass spectrometry detection strategy for rapid and efficient measurement of site-specific glycosylation occupancy on diverse salivary glycoproteins suitable for biomarker discovery and detection of changes in glycosylation occupancy in human disease.
Resumo:
Accurate process model elicitation continues to be a time consuming task, requiring skill on the part of the interviewer to extract explicit and tacit process information from the interviewee. Many errors occur in this elicitation stage that would be avoided by better activity recall, more consistent specification methods and greater engagement in the elicitation process by interviewees. Metasonic GmbH has developed a process elicitation tool for their process suite. As part of a research engagement with Metasonic, staff from QUT, Australia have developed a 3D virtual world approach to the same problem, viz. eliciting process models from stakeholders in an intuitive manner. This book chapter tells the story of how QUT staff developed a 3D Virtual World tool for process elicitation, took the outcomes of their research project to Metasonic for evaluation, and finally, Metasonic’s response to the initial proof of concept.
Resumo:
This research established innovative methods and a predictive model to evaluate water quality using the trace element and heavy metal concentrations of drinking water from the greater Brisbane area. Significantly, the combined use of Inductively Coupled Plasma - Mass Spectrometry and Chemometrics can be used worldwide to provide comprehensive, rapid and affordable analyses of elements in drinking water that can have a considerable impact on human health.
Resumo:
Excess weight and obesity are factors that are strongly associated with risk for Obstructive Sleep Apnoea (OSA).Weight loss has been associated with improvements in clinical indicators of OSA severity; however, patients’ beliefs about diet change have not been investigated. This study utilized a validated behaviour change model to estimate the relationship between food liking, food intake and indices of OSA severity. Two-hundred and six OSA patients recruited from a Sleep Disorders Clinic completed standardized questionnaires of: a) fat and fibre food intake, food liking, and food knowledge and; b) attitudes and intentions towards fat reduction. OSA severity and body mass index (BMI) were objectively measured using standard clinical guidelines. The relationship between liking for high fat food and OSA severity was tested with hierarchical regression. Gender and BMI explained a significant 20% of the variance in OSA severity, Fibre Liking accounted for an additional 6% (a negative relationship), and Fat Liking accounted for a further 3.6% of variance. Although the majority of individuals (47%) were currently “active” in reducing fat intake, overall the patients’ dietary beliefs and behaviours did not correspond. The independent relationship between OSA severity and liking for high fat foods (and disliking of high fibre foods) may be consistent with a two-way interaction between sleep disruption and food choice. Whilst the majority of OSA patients were intentionally active in changing to a healthy diet, further emphasis on improving healthy eating practices and beliefs in this population is necessary.
Resumo:
This paper relates to the importance of impact of the chosen bottle-point method when conducting ion exchange equilibria experiments. As an illustration, potassium ion exchange with strong acid cation resin was investigated due to its relevance to the treatment of various industrial effluents and groundwater. The “constant mass” bottle-point method was shown to be problematic in that depending upon the resin mass used the equilibrium isotherm profiles were different. Indeed, application of common equilibrium isotherm models revealed that the optimal fit could be with either the Freundlich or Temkin equations, depending upon the conditions employed. It could be inferred that the resin surface was heterogeneous in character, but precise conclusions regarding the variation in the heat of sorption were not possible. Estimation of the maximum potassium loading was also inconsistent when employing the “constant mass” method. The “constant concentration” bottle-point method illustrated that the Freundlich model was a good representation of the exchange process. The isotherms recorded were relatively consistent when compared to the “constant mass” approach. Unification of all the equilibrium isotherm data acquired was achieved by use of the Langmuir Vageler expression. The maximum loading of potassium ions was predicted to be at least 116.5 g/kg resin.
Resumo:
Introduced in this paper is a Bayesian model for isolating the resonant frequency from combustion chamber resonance. The model shown in this paper focused on characterising the initial rise in the resonant frequency to investigate the rise of in-cylinder bulk temperature associated with combustion. By resolving the model parameters, it is possible to determine: the start of pre-mixed combustion, the start of diffusion combustion, the initial resonant frequency, the resonant frequency as a function of crank angle, the in-cylinder bulk temperature as a function of crank angle and the trapped mass as a function of crank angle. The Bayesian method allows for individual cycles to be examined without cycle-averaging|allowing inter-cycle variability studies. Results are shown for a turbo-charged, common-rail compression ignition engine run at 2000 rpm and full load.
Resumo:
In this paper, we propose a novel online hidden Markov model (HMM) parameter estimator based on the new information-theoretic concept of one-step Kerridge inaccuracy (OKI). Under several regulatory conditions, we establish a convergence result (and some limited strong consistency results) for our proposed online OKI-based parameter estimator. In simulation studies, we illustrate the global convergence behaviour of our proposed estimator and provide a counter-example illustrating the local convergence of other popular HMM parameter estimators.
Resumo:
This paper introduces the smooth transition logit (STL) model that is designed to detect and model situations in which there is structural change in the behaviour underlying the latent index from which the binary dependent variable is constructed. The maximum likelihood estimators of the parameters of the model are derived along with their asymptotic properties, together with a Lagrange multiplier test of the null hypothesis of linearity in the underlying latent index. The development of the STL model is motivated by the desire to assess the impact of deregulation in the Queensland electricity market and ascertain whether increased competition has resulted in significant changes in the behaviour of the spot price of electricity, specifically with respect to the occurrence of periodic abnormally high prices. The model allows the timing of any change to be endogenously determined and also market participants' behaviour to change gradually over time. The main results provide clear evidence in support of a structural change in the nature of price events, and the endogenously determined timing of the change is consistent with the process of deregulation in Queensland.
Resumo:
This paper reflects on a 2008 project in which a teacher invited two parents1 of students in his class to coteach with him on the topic of War and Refugees (Willis, 2013). Although the project occurred in a Year eight context, it has utility for all teachers in showing how the four resources model (FRM) (Freebody and Luke, 1990) of language and literacy teaching and learning may provide a viewing platform for seeing the benefits and potential of coteaching for parent-school-community engagement. For decades, governments nationally and internationally have actively supported parentschool- community involvement initiatives. In Australia, these include the establishment in 2008 of The Family-School and Community Partnerships Bureau and its recent publication, Parental engagement in learning and schooling: Lessons from research (Emerson, Fear, Fox, and Sanders, 2012). These initiatives derive from strong, consistent research evidence that parent involvement in schools not only benefits students, teachers, and schools but also has wide-ranging implications for education reform, employers and communities, and ultimately Australia's future economic prosperity. These initiatives also continue to inform the Australian Institute for Teaching and School Leadership (AITSL) in identifying ways teachers and school leaders can generate and sustain professional engagement with colleagues, parents, and the community to meet new national teaching standards.
Resumo:
Drying of food materials offers a significant increase in the shelf life of food materials, along with the modification of quality attributes due to simultaneous heat and mass transfer. Shrinkage and variations in porosity are the common micro and microstructural changes that take place during the drying of mostly the food materials. Although extensive research has been carried out on the prediction of shrinkage and porosity over the time of drying, no single model exists which consider both material properties and process condition in the same model. In this study, an attempt has been made to develop and validate shrinkage and porosity models of food materials during drying considering both process parameters and sample properties. The stored energy within the sample, elastic potential energy, glass transition temperature and physical properties of the sample such as initial porosity, particle density, bulk density and moisture content have been taken into consideration. Physical properties and validation have been made by using a universal testing machine ( Instron 2kN), a profilometer (Nanovea) and a pycnometer. Apart from these, COMSOL Multiphysics 4.4 has been used to solve heat and mass transfer physics. Results obtained from models of shrinkage and porosity is quite consistent with the experimental data. Successful implementation of these models would ensure the use of optimum energy in the course of drying and better quality retention of dried foods.
Resumo:
Switchgrass was treated by 1% (w/w) H₂SO₄in batch tube reactors at temperatures ranging from 140–220°C for up to 60 minutes. In this study, release patterns of glucose, 5-hydroxymethylfurfural (5-HMF), and levulinic acid from switchgrass cellulose were investigated through a mechanistic kinetic model. The predictions were consistent with the measured products of interest when new parameters reflecting the effects of reaction limitations, such as cellulose crystallinity, acid soluble lignin–glucose complex (ASL–glucose) and humins that cannot be quantitatively analyzed, were included. The new mechanistic kinetic model incorporating these parameters simulated the experimental data with R² above 0.97. Results showed that glucose yield was most sensitive to variations in the parameter regarding the cellulose crystallinity at low temperatures (140–180°C), while the impact of crystallinity on the glucose yield became imperceptible at elevated temperatures (200–220 °C). Parameters related to the undesired products (e.g. ASL–glucose and humins) were the most sensitive factors compared with rate constants and other additional parameters in impacting the levulinic acid yield at elevated temperatures (200–220°C), while their impacts were negligible at 140–180°C. These new findings provide a more rational explanation for the kinetic changes in dilute acid pretreatment performance and suggest that the influences of cellulose crystallinity and undesired products including ASL–glucose and humins play key roles in determining the generation of glucose, 5-HMF and levulinic acid from biomass-derived cellulose.
Resumo:
Cued recall and item recognition are considered the standard episodic memory retrieval tasks. However, only the neural correlates of the latter have been studied in detail with fMRI. Using an event-related fMRI experimental design that permits spoken responses, we tested hypotheses from an auto-associative model of cued recall and item recognition [Chappell, M., & Humphreys, M. S. (1994). An auto-associative neural network for sparse representations: Analysis and application to models of recognition and cued recall. Psychological Review, 101, 103-128]. In brief, the model assumes that cues elicit a network of phonological short term memory (STM) and semantic long term memory (LTM) representations distributed throughout the neocortex as patterns of sparse activations. This information is transferred to the hippocampus which converges upon the item closest to a stored pattern and outputs a response. Word pairs were learned from a study list, with one member of the pair serving as the cue at test. Unstudied words were also intermingled at test in order to provide an analogue of yes/no recognition tasks. Compared to incorrectly rejected studied items (misses) and correctly rejected (CR) unstudied items, correctly recalled items (hits) elicited increased responses in the left hippocampus and neocortical regions including the left inferior prefrontal cortex (LIPC), left mid lateral temporal cortex and inferior parietal cortex, consistent with predictions from the model. This network was very similar to that observed in yes/no recognition studies, supporting proposals that cued recall and item recognition involve common rather than separate mechanisms.
Resumo:
Concrete-filled steel tubular (CFST) columns have shown great potential as axial load carrying member and used widely in many mission critical infrastructures. However, attention is needed to strengthen these members where transverse impact force is expected to occur due to vehicle collisions. In this work, finite element (FE) model of carbon fibre reinforced polymer (CFRP) strengthened CFST columns are developed and the effect of CFRP bond length is investigated under transverse impact loading. Initially the numerical models have been validated by comparing impact test results from literature. The validated models are then used for detail parametric studies by varying the length of externally bonded CFRP composites. The parameters considered for this research are impact velocity, impact mass, CFRP modulus, adhesive type, and axial static loading. It has been observed that the effect of CFRP strengthening is consistent after an optimum effective bond length of CFRP wrapping. The effect of effective bond length has been studied for above parameters. The results show that, under combined axial static and transverse impact loads CFST columns can successfully prevent global buckling failure by strengthening only 34% of column length. Therefore, estimation of effective bond length is essential to utilise the CFRP composites cost effectively.
Resumo:
We report sensitive high mass resolution ion microprobe, stable isotopes (SHRIMP SI) multiple sulfur isotope analyses (32S, 33S, 34S) to constrain the sources of sulfur in three Archean VMS deposits—Teutonic Bore, Bentley, and Jaguar—from the Teutonic Bore volcanic complex of the Yilgarn Craton, Western Australia, together with sedimentary pyrites from associated black shales and interpillow pyrites. The pyrites from VMS mineralization are dominated by mantle sulfur but include a small amount of slightly negative mass-independent fractionation (MIF) anomalies, whereas sulfur from the pyrites in the sedimentary rocks has pronounced positive MIF, with ∆33S values that lie between 0.19 and 6.20‰ (with one outlier at −1.62‰). The wall rocks to the mineralization include sedimentary rocks that have contributed no detectable positive MIF sulfur to the VMS deposits, which is difficult to reconcile with the leaching model for the formation of these deposits. The sulfur isotope data are best explained by mixing between sulfur derived from a magmatic-hydrothermal fluid and seawater sulfur as represented by the interpillow pyrites. The massive sulfide lens pyrites have a weighted mean ∆33S value of −0.27 ± 0.05‰ (MSWD = 1.6) nearly identical with −0.31 ± 0.08‰ (MSWD = 2.4) for pyrites from the stringer zone, which requires mixing to have occurred below the sea floor. We employed a two-component mixing model to estimate the contribution of seawater sulfur to the total sulfur budget of the two Teutonic Bore volcanic complex VMS deposits. The results are 15 to 18% for both Teutonic Bore and Bentley, much higher than the 3% obtained by Jamieson et al. (2013) for the giant Kidd Creek deposit. Similar calculations, carried out for other Neoarchean VMS deposits give value between 2% and 30%, which are similar to modern hydrothermal VMS deposits. We suggest that multiple sulfur isotope analyses may be used to predict the size of Archean VMS deposits and to provide a vector to ore deposit but further studies are needed to test these suggestions.