103 resultados para MASS SPECTROMETRY, GAS PHASE ACIDITY, GAS PHASE BASICITY


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ion-molecule reactions between molecular oxygen and peptide radicals in the gas phase demonstrate that radical migration occurs easily within large biomolecules without addition of collisional activation energy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deprotonated o, m-, and p-methoxyacetanilide show pronounced peaks in their collision-induced tandem mass spectra (MS/MS) produced by losses of the elements of C2H6. It is proposed that this reaction is a 'cross-ring' internal S(N)2 reaction involving an incipient methyl anion. For example, p-CH3O-C6H4-N--CO-CH3--> [(p.CH3O-C6H4-N=C=O)CH3-]--> O---C6H4-N=C=O+C2H6.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deprotonated o, m-, and p-methoxyacetanilide show pronounced peaks in their collision-induced tandem mass spectra (MS/MS) produced by losses of the elements of C2H6. It is proposed that this reaction is a 'cross-ring' internal S(N)2 reaction involving an incipient methyl anion. For example, p-CH3O-C6H4-N--CO-CH3--> [(p.CH3O-C6H4-N=C=O)CH3-]--> O---C6H4-N=C=O+C2H6.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Both [C4CO]−· and [C2COC2]−· are formed in the ion source of a VG ZAB 2HF mass spectrometer by the respective processes HO− + Me3Si–CC–CC–CO–CMe3 → [C4CO]−· + Me3SiOH + Me3C·, and Me3Si–CC–CO–CC–SiMe3 + SF6 + e → [C2COC2]−· + 2Me3SiF + SF4. The second synthetic pathway involves a double desilylation reaction similar to that first reported by Squires. The two radical anion isomers produce different and characteristic charge reversal spectra upon collisional activation. In contrast, following collision induced charge stripping, both radical anions produce neutral C4CO as evidenced by the identical neutralisation reionisation (−NR+) spectra. The exclusive rearrangement of C213COC2 to C413CO indicates that 12C–O bond formation is not involved in the reaction. Ab initio calculations (at the RCCSD(T)/aug-cc-pVDZ//B3LYP/6-31G∗ level of theory) have been used to investigate the reaction coordinates on the potential surfaces for both singlet and triplet rearrangements of neutral C2COC2. Singlet C2COC2 is less stable than singlet C4CO by 78.8 kcal mol−1 and requires only 8.5 kcal mol−1 of additional energy to effect conversion to C4CO by a rearrangement sequence involving three C–C ring opening/cyclisation steps.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ethylenedione C2O2 is one of the elusive small molecules which have remained undetected even after numerous attempts with different experimental techniques, This is surprising, since theoretical studies predicted the triplet state of C2O2 to be stable towards spin-allowed dissociation and hence long-lived. Here we report a comprehensive study of charged and neutral ethylenedione by means of charge reversal and neutralization -reionization mass spectrometry. These experimental results, in conjunction with theoretical calculations, suggest that neutral ethylenedione is intrinsically short-lived rather than being elusive, Both the singlet and triplet states of C2O2 are predicted to dissociate rapidly into two ground-state CO molecules, and for the triplet species, this dissociation involves facile curve-crossing to the singlet surface within a few nanoseconds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ozone-induced dissociation (OzID) exploits the gas-phase reaction between mass-selected lipid ions and ozone vapor to determine the position(s) of unsaturation In this contribution, we describe the modification of a tandem linear ion-trap mass spectrometer specifically for OzID analyses wherein ozone vapor is supplied to the collision cell This instrumental configuration provides spatial separation between mass-selection, the ozonolysis reaction, and mass-analysis steps in the OzID process and thus delivers significant enhancements in speed and sensitivity (ca 30-fold) These improvements allow spectra revealing the double-bond position(s) within unsaturated lipids to be acquired within 1 s significantly enhancing the utility of OzID in high-throughput lipidomic protocols The stable ozone concentration afforded by this modified instrument also allows direct comparison of relative reactivity of isomeric lipids and reveals reactivity trends related to (1) double-bond position, (2) substitution position on the glycerol backbone, and (3) stereochemistry For cis- and trans-isomers, differences were also observed in the branching ratio of product ions arising from the gas-phase ozonolysis reaction, suggesting that relative ion abundances could be exploited as markers for double-bond geometry Additional activation energy applied to mass-selected lipid ions during injection into the collision cell (with ozone present) was found to yield spectra containing both OzID and classical-CID fragment ions This combination CID-OzID acquisition on an ostensibly simple monounsaturated phosphatidylcholine within a cow brain lipid extract provided evidence for up to four structurally distinct phospholipids differing in both double-bond position and sn-substitution U Am Soc Mass Spectrom 2010, 21, 1989-1999) (C) 2010 American Society for Mass Spectrometry

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Long-range cross-ring reactions occur when (M - H)(-) ions of methoxy- and ethoxy-C6H4-(-)NCOR (R = H, CH3, C6H5 and CH3O) are subjected to collisional activation, These reactions are generally minor processes: a particular example is the cross-ring elimination p-C2H5O-C6H4-(NCOCH3)-N-- --> [CH3-(p-C2H5O-C6H4-NCO)] --> p-(O--)-C6H4-NCO + C2H4 + CH4. Major processes of these (M - H)(-) ions involve (i) losses of radicals to form stabilised radical anions, e.g. (a) loss of a ring H-. or (b) CH3. (or C2H5.) from the alkoxy group, and (ii) proximity effects when the two substituents are ortho, e.g. loss of CH3OH from o-CH3O-C6H4-(NCHO)-N-- yields deprotonated benzoxazole. Another fragmentation of an arylmethoxyl anion involves loss of CH2O. It is proposed that losses of CH2O are initiated by anionic centres but the actual mechanisms in the cases studied depend upon the substitution pattern of the methoxyanilide: o- and p-methoxyanilides may undergo ipso proton transfer/elimination reactions, whereas the in-analogues undergo proton transfer reactions to yield an o-CH3O substituted aryl carbanion followed by proton transfer from CH3O to the carbanion site with concomitant loss of CH2O.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is a modified version of a lecture which describes the synthesis, structure and reactivity of some neutral molecules of stellar significance. The neutrals are formed in the collision cell of a mass spectrometer following vertical Franck-Condon one electron oxidation of anions of known bond connectivity. Neutrals are characterised by conversion to positive ions and by extensive theoretical studies at the CCSD(T)/aug-cc-pVDZ//B3LYP/6-31G(d) level of theory. Four systems are considered in detail, viz (i) the formation of linear C-4 and its conversion to the rhombus C-4, (ii) linear C-5 and the atom scrambling of this system when energised, (iii) the stable cumulene oxide CCCCCO, and (iv) the elusive species O2C-CO. This paper is not intended to be a review of interstellar chemistry: examples are selected from our own work in this area. (C) 2002 Elsevier Science Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thermal decomposition process of kaolinite–potassium acetate intercalation complex has been studied using simultaneous thermogravimetry coupled with Fourier-transform infrared spectroscopy and mass spectrometry (TG-FTIR-MS). The results showed that the thermal decomposition of the complex took place in four temperature ranges, namely 50–100, 260–320, 320–550, and 650–780 °C. The maximal mass losses rate for the thermal decomposition of the kaolinite–potassium acetate intercalation complex was observed at 81, 296, 378, 411, 486, and 733 °C, which was attributed to (a) loss of the adsorbed water, (b) thermal decomposition of surface-adsorbed potassium acetate (KAc), (c) the loss of the water coordinated to potassium acetate in the intercalated kaolinite, (d) the thermal decomposition of intercalated KAc in the interlayer of kaolinite and the removal of inner surface hydroxyls, (e) the loss of the inner hydroxyls, and (f) the thermal decomposition of carbonate derived from the decomposition of KAc. The thermal decomposition of intercalated potassium acetate started in the range 320–550 °C accompanied by the release of water, acetone, carbon dioxide, and acetic acid. The identification of pyrolysis fragment ions provided insight into the thermal decomposition mechanism. The results showed that the main decomposition fragment ions of the kaolinite–KAc intercalation complex were water, acetone, carbon dioxide, and acetic acid. TG-FTIR-MS was demonstrated to be a powerful tool for the investigation of kaolinite intercalation complexes. It delivers a detailed insight into the thermal decomposition processes of the kaolinite intercalation complexes characterized by mass loss and the evolved gases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The extensive use of alkoxyamines in controlled radical polymerisation and polymer stabilisation is based on rapid cycling between the alkoxyamine (R1R2NO–R3) and a stable nitroxyl radical (R1R2NO•) via homolysis of the labile O–C bond. Competing homolysis of the alkoxyamine N–O bond has been predicted to occur for some substituents leading to production of aminyl and alkoxyl radicals. This intrinsic competition between the O–C and N–O bond homolysis processes has to this point been difficult to probe experimentally. Herein we examine the effect of local molecular structure on the competition between N–O and O–C bond cleavage in the gas phase by variable energy tandem mass spectrometry in a triple quadrupole mass spectrometer. A suite of cyclic alkoxyamines with remote carboxylic acid moieties (HOOC–R1R2NO–R3) were synthesised and subjected to negative ion electrospray ionisation to yield [M – H]− anions where the charge is remote from the alkoxyamine moiety. Collision-induced dissociation of these anions yield product ions resulting, almost exclusively, from homolysis of O–C and/or N–O bonds. The relative efficacy of N–O and O–C bond homolysis was examined for alkoxyamines incorporating different R3 substituents by varying the potential difference applied to the collision cell, and comparing dissociation thresholds of each product ion channel. For most R3 substituents, product ions from homolysis of the O–C bond are observed and product ions resulting from cleavage of the N–O bond are minor or absent. A limited number of examples were encountered however, where N–O homolysis is a competitive dissociation pathway because the O–C bond is stabilised by adjacent heteroatom(s) (e.g., R3 = CH2F). The dissociation threshold energies were compared for different alkoxyamine substituents (R3) and the relative ordering of these experimentally determined energies is shown to correlate with the bond dissociation free energies, calculated by ab initio methods. Understanding the structure-dependent relationship between these rival processes will assist in the design and selection of alkoxyamine motifs that selectively promote the desirable O–C homolysis pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The products evolved during the thermal decomposition of the coal-derived pyrite/marcasite were studied using simultaneous thermogravimetry coupled with Fourier-transform infrared spectroscopy and mass spectrometry (TG-FTIR–MS) technique. The main gases and volatile products released during the thermal decomposition of the coal-derived pyrite/marcasite are water (H2O), carbon dioxide (CO2), and sulfur dioxide (SO2). The results showed that the evolved products obtained were mainly divided into two processes: (1) the main evolved product H2O is mainly released at below 300 °C; (2) under the temperature of 450–650 °C, the main evolved products are SO2 and small amount of CO2. It is worth mentioning that SO3 was not observed as a product as no peak was observed in the m/z = 80 curve. The chemical substance SO2 is present as the main gaseous product in the thermal decomposition for the sample. The coal-derived pyrite/marcasite is different from mineral pyrite in thermal decomposition temperature. The mass spectrometric analysis results are in good agreement with the infrared spectroscopic analysis of the evolved gases. These results give the evidence on the thermal decomposition products and make all explanations have the sufficient evidence. Therefore, TG–MS–IR is a powerful tool for the investigation of gas evolution from the thermal decomposition of materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Scientists have injected endotoxin into animals to investigate and understand various pathologies and novel therapies for several decades. Recent observations have shown that there is selective susceptibility to Escherichia coli lipopolysaccharide (LPS) endotoxin in sheep, despite having similar breed characteristics. The reason behind this difference is unknown, and has prompted studies aiming to explain the variation by proteogenomic characterisation of circulating acute phase biomarkers. It is hypothesised that genetic trait, biochemical, immunological and inflammation marker patterns contribute in defining and predicting mammalian response to LPS. This review discusses the effects of endotoxin and host responses, genetic basis of innate defences, activation of the acute phase response (APR) following experimental LPS challenge, and the current approaches employed in detecting novel biomarkers including acute phase proteins (APP) and micro-ribonucleic acids (miRNAs) in serum or plasma. miRNAs are novel targets for elucidating molecular mechanisms of disease because of their differential expression during pathological, and in healthy states. Changes in miRNA profiles during a disease challenge may be reflected in plasma. Studies show that gel-based two-dimensional electrophoresis (2-DE) coupled with either matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) or liquid chromatography-mass spectrometry (LC-MS/MS) are currently the most used methods for proteome characterisation. Further evidence suggests that proteomic investigations are preferentially shifting from 2-DE to non-gel based LC-MS/MS coupled with data extraction by sequential window acquisition of all theoretical fragment-ion spectra (SWATH) approaches that are able to identify a wider range of proteins. Enzyme-linked immunosorbent assay (ELISA), quantitative real-time polymerase chain reaction (qRT-PCR), and most recently proteomic methods have been used to quantify low abundance proteins such as cytokines. qRT-PCR and next generation sequencing (NGS) are used for the characterisation of miRNA. Proteogenomic approaches for detecting APP and novel miRNA profiling are essential in understanding the selective resistance to endotoxin in sheep. The results of these methods could help in understanding similar pathology in humans. It might also be helpful in the development of physiological and diagnostic screening assays for determining experimental inclusion and endpoints, and in clinical trials in future

Relevância:

100.00% 100.00%

Publicador:

Resumo:

β-Hydroxyperoxyl radicals are formed during atmospheric oxidation of unsaturated volatile organic compounds such as isoprene. They are intermediates in the combustion of alcohols. In these environments the unimolecular isomerization and decomposition of β-hydroxyperoxyl radicals may be of importance, either through chemical or thermal activation. We have used ion-trap mass spectrometry to generate the distonic charge-tagged β-hydroxyalkyl radical anion, ˙CH2C(OH)(CH3)CH2C(O)O−, and investigated its subsequent reaction with O2 in the gas phase under conditions that are devoid of complicating radical–radical reactions. Quantum chemical calculations and master equation/RRKM theory modeling are used to rationalize the results and discern a reaction mechanism. Reaction is found to proceed via initial hydrogen abstraction from the γ-methylene group and from the β-hydroxyl group, with both reaction channels eventually forming isobaric product ions due to loss of either ˙OH + HCHO or ˙OH + CO2. Isotope labeling studies confirm that a 1,5-hydrogen shift from the β-hydroxyl functionality results in a hydroperoxyalkoxyl radical intermediate that can undergo further unimolecular dissociations. Furthermore, this study confirms that the facile decomposition of β-hydroxyperoxyl radicals can yield ˙OH in the gas phase.