141 resultados para Least squares methods
Resumo:
This paper focuses on information sharing with key suppliers and seeks to explore the factors that might influence its extent and depth. We also investigate how information sharing affects a company’s performance with regards to resource usage, output, and flexibility. Drawing from transaction cost- and contingency theories, several factors, namely environmental uncertainty, demand uncertainty, dependency and, the product life cycle stage are proposed to explain the level of information shared with key suppliers. We develop a model where information sharing mediates the (contingent) factors and company performance. A mail survey was used to collect data from Finnish and Swedish companies. Partial Least Squares analysis was separately performed for each country (n=119, n=102). There was consistent evidence that environmental uncertainty, demand uncertainty and supplier/buyer dependency had explanatory power, whereas no significance was found for the product life cycle stage. The results also confirm previous studies by providing support for a positive relationship between information sharing and performance, where output performance was found to be the most strongly related
Resumo:
This paper focuses on information sharing with key suppliers and seeks to explore the factors that might influence its extent and depth. We also investigate how information sharing affects a company’s performance with regards to resource usage, output, and flexibility. Drawing from transaction cost- and contingency theories, several factors, namely environmental uncertainty, demand uncertainty, dependency and, the product life cycle stage are proposed to explain the level of information shared with key suppliers. We develop a model where information sharing mediates the (contingent) factors and company performance. A mail survey was used to collect data from Finnish and Swedish companies. Partial Least Squares analysis was separately performed for each country (n=119, n=102). There was consistent evidence that environmental uncertainty, demand uncertainty and supplier/buyer dependency had explanatory power, whereas no significance was found for the relationship between product life cycle stage and information sharing. The results also confirm previous studies by providing support for a positive relationship between information sharing and performance, where output performance was found to be the most strongly related.
Resumo:
This paper studies the impact of the diversity of domestic and international innovation partnerships on the innovation outcomes of South African firms. A number of competing hypotheses are formulated and tested empirically using a sample of South African firms in manufacturing and services by applying Ordinary Least Squares regression analyses. Results show that having an innovation partnership, particularly an international partnership, is beneficial to innovation outcomes. However, it also emerges that too diverse a set of international partnerships is detrimental to innovation outcomes. The paper concludes with a discussion and a number of proposals for future research.
Resumo:
Differential pulse stripping voltammetry method(DPSV) was applied to the determination of three herbicides, ametryn, cyanatryn, and dimethametryn. It was found that their voltammograms overlapped strongly, and it is difficult to determine these compounds individually from their mixtures. With the aid of chemometrics, classical least squares(CLS), principal component regression(PCR) and partial least squares(PLS), voltammogram resolution and quantitative analysis of the synthetic mixtures of the three compounds were successfully performed. The proposed method was also applied to the analysis of some real samples with satisfactory results.
Resumo:
This research is one of several ongoing studies conducted within the IT Professional Services (ITPS) research programme at Queensland University of Technology (QUT). In 2003, ITPS introduced the IS-Impact model, a measurement model for measuring information systems success from the viewpoint of multiple stakeholders. The model, along with its instrument, is robust, simple, yet generalisable, and yields results that are comparable across time, stakeholders, different systems and system contexts. The IS-Impact model is defined as “a measure at a point in time, of the stream of net benefits from the Information System (IS), to date and anticipated, as perceived by all key-user-groups”. The model represents four dimensions, which are ‘Individual Impact’, ‘Organizational Impact’, ‘Information Quality’ and ‘System Quality’. The two Impact dimensions measure the up-to-date impact of the evaluated system, while the remaining two Quality dimensions act as proxies for probable future impacts (Gable, Sedera & Chan, 2008). To fulfil the goal of ITPS, “to develop the most widely employed model” this research re-validates and extends the IS-Impact model in a new context. This method/context-extension research aims to test the generalisability of the model by addressing known limitations of the model. One of the limitations of the model relates to the extent of external validity of the model. In order to gain wide acceptance, a model should be consistent and work well in different contexts. The IS-Impact model, however, was only validated in the Australian context, and packaged software was chosen as the IS understudy. Thus, this study is concerned with whether the model can be applied in another different context. Aiming for a robust and standardised measurement model that can be used across different contexts, this research re-validates and extends the IS-Impact model and its instrument to public sector organisations in Malaysia. The overarching research question (managerial question) of this research is “How can public sector organisations in Malaysia measure the impact of information systems systematically and effectively?” With two main objectives, the managerial question is broken down into two specific research questions. The first research question addresses the applicability (relevance) of the dimensions and measures of the IS-Impact model in the Malaysian context. Moreover, this research question addresses the completeness of the model in the new context. Initially, this research assumes that the dimensions and measures of the IS-Impact model are sufficient for the new context. However, some IS researchers suggest that the selection of measures needs to be done purposely for different contextual settings (DeLone & McLean, 1992, Rai, Lang & Welker, 2002). Thus, the first research question is as follows, “Is the IS-Impact model complete for measuring the impact of IS in Malaysian public sector organisations?” [RQ1]. The IS-Impact model is a multidimensional model that consists of four dimensions or constructs. Each dimension is represented by formative measures or indicators. Formative measures are known as composite variables because these measures make up or form the construct, or, in this case, the dimension in the IS-Impact model. These formative measures define different aspects of the dimension, thus, a measurement model of this kind needs to be tested not just on the structural relationship between the constructs but also the validity of each measure. In a previous study, the IS-Impact model was validated using formative validation techniques, as proposed in the literature (i.e., Diamantopoulos and Winklhofer, 2001, Diamantopoulos and Siguaw, 2006, Petter, Straub and Rai, 2007). However, there is potential for improving the validation testing of the model by adding more criterion or dependent variables. This includes identifying a consequence of the IS-Impact construct for the purpose of validation. Moreover, a different approach is employed in this research, whereby the validity of the model is tested using the Partial Least Squares (PLS) method, a component-based structural equation modelling (SEM) technique. Thus, the second research question addresses the construct validation of the IS-Impact model; “Is the IS-Impact model valid as a multidimensional formative construct?” [RQ2]. This study employs two rounds of surveys, each having a different and specific aim. The first is qualitative and exploratory, aiming to investigate the applicability and sufficiency of the IS-Impact dimensions and measures in the new context. This survey was conducted in a state government in Malaysia. A total of 77 valid responses were received, yielding 278 impact statements. The results from the qualitative analysis demonstrate the applicability of most of the IS-Impact measures. The analysis also shows a significant new measure having emerged from the context. This new measure was added as one of the System Quality measures. The second survey is a quantitative survey that aims to operationalise the measures identified from the qualitative analysis and rigorously validate the model. This survey was conducted in four state governments (including the state government that was involved in the first survey). A total of 254 valid responses were used in the data analysis. Data was analysed using structural equation modelling techniques, following the guidelines for formative construct validation, to test the validity and reliability of the constructs in the model. This study is the first research that extends the complete IS-Impact model in a new context that is different in terms of nationality, language and the type of information system (IS). The main contribution of this research is to present a comprehensive, up-to-date IS-Impact model, which has been validated in the new context. The study has accomplished its purpose of testing the generalisability of the IS-Impact model and continuing the IS evaluation research by extending it in the Malaysian context. A further contribution is a validated Malaysian language IS-Impact measurement instrument. It is hoped that the validated Malaysian IS-Impact instrument will encourage related IS research in Malaysia, and that the demonstrated model validity and generalisability will encourage a cumulative tradition of research previously not possible. The study entailed several methodological improvements on prior work, including: (1) new criterion measures for the overall IS-Impact construct employed in ‘identification through measurement relations’; (2) a stronger, multi-item ‘Satisfaction’ construct, employed in ‘identification through structural relations’; (3) an alternative version of the main survey instrument in which items are randomized (rather than blocked) for comparison with the main survey data, in attention to possible common method variance (no significant differences between these two survey instruments were observed); (4) demonstrates a validation process of formative indexes of a multidimensional, second-order construct (existing examples mostly involved unidimensional constructs); (5) testing the presence of suppressor effects that influence the significance of some measures and dimensions in the model; and (6) demonstrates the effect of an imbalanced number of measures within a construct to the contribution power of each dimension in a multidimensional model.
Resumo:
In this paper, spatially offset Raman spectroscopy (SORS) is demonstrated for non-invasively investigating the composition of drug mixtures inside an opaque plastic container. The mixtures consisted of three components including a target drug (acetaminophen or phenylephrine hydrochloride) and two diluents (glucose and caffeine). The target drug concentrations ranged from 5% to 100%. After conducting SORS analysis to ascertain the Raman spectra of the concealed mixtures, principal component analysis (PCA) was performed on the SORS spectra to reveal trends within the data. Partial least squares (PLS) regression was used to construct models that predicted the concentration of each target drug, in the presence of the other two diluents. The PLS models were able to predict the concentration of acetaminophen in the validation samples with a root-mean-square error of prediction (RMSEP) of 3.8% and the concentration of phenylephrine hydrochloride with an RMSEP of 4.6%. This work demonstrates the potential of SORS, used in conjunction with multivariate statistical techniques, to perform non-invasive, quantitative analysis on mixtures inside opaque containers. This has applications for pharmaceutical analysis, such as monitoring the degradation of pharmaceutical products on the shelf, in forensic investigations of counterfeit drugs, and for the analysis of illicit drug mixtures which may contain multiple components.
Resumo:
This paper aims to develop an implicit meshless collocation technique based on the moving least squares approximation for numerical simulation of the anomalous subdiffusion equation(ASDE). The discrete system of equations is obtained by using the MLS meshless shape functions and the meshless collocation formulation. The stability and convergence of this meshless approach related to the time discretization are investigated theoretically and numerically. The numerical examples with regular and irregular nodal distributions are used to the newly developed meshless formulation. It is concluded that the present meshless formulation is very effective for the modeling of ASDEs.
Resumo:
This study is motivated by, and proceeds from, a central interest in the importance of evaluating IS service quality and adopts the IS ZOT SERVQUAL instrument (Kettinger & Lee, 2005) as its core theory base. This study conceptualises IS service quality as a multidimensional formative construct and seeks to answer the main research questions: “Is the IS service quality construct valid as a 1st-order formative, 2nd-order formative multidimensional construct?” Additionally, with the aim of validating the IS service quality construct within its nomological net, as in prior service marketing work, Satisfaction was hypothesised as its immediate consequence. With the goal of testing the above research question, IS service quality and Satisfaction were operationalised in a quantitative survey instrument. Partial least squares (PLS), employing 219 valid responses, largely evidenced the validity of IS service quality as a multidimensional formative construct. The nomological validity of the IS service quality construct was also evidenced by demonstrating that 55% of Satisfaction was explained by the multidimensional formative IS service quality construct.
Resumo:
The structures of the open chain amide carboxylic acid rac-cis-[2-(2-methoxyphenyl)carbamoyl]cyclohexane-1-carboxylic acid, C15H19NO4, (I) and the cyclic imides rac-cis-2-(4-methoxyphenyl)-3a,4,5,6,7,7-hexahydroisoindole-1,3-dione,C15H17NO3, (II), chiral cis-2-(3-carboxyphenyl)-3a,4,5,6,7,7a-hexahydroisoindole-1,3-dione, C15H15NO4,(III) and rac-cis-2-(4-carboxyphenyl)- 3a,4,5,6,7,7a-hexahydroisoindole-1,3-dione monohydrate, C15H15NO4. H2O) (IV), are reported. In the amide acid (I), the phenylcarbamoyl group is essentially planar [maximum deviation from the least-squares plane = 0.060(1)Ang. for the amide O atom], the molecules form discrete centrosymmetric dimers through intermolecular cyclic carboxy-carboxy O-H...O hydrogen-bonding interactions [graph set notation R2/2(8)]. The cyclic imides (II)--(IV) are conformationally similar, with comparable phenyl ring rotations about the imide N-C(aromatic) bond [dihedral angles between the benzene and isoindole rings = 51.55(7)deg. in (II), 59.22(12)deg. in (III) and 51.99(14)deg. in (IV). Unlike (II) in which only weak intermolecular C-H...O(imide) hydrogen bonding is present, the crystal packing of imides (III) and (IV) shows strong intermolecular carboxylic acid O-H...O hydrogen-bonding associations. With (III), these involve imide O-atom acceptors, giving one-dimensional zigzag chains [graph set C(9)], while with the monohydrate (IV), the hydrogen bond involves the partially disordered water molecule which also bridges molecules through both imide and carboxyl O-atom acceptors in a cyclic R4/4(12) association, giving a two-dimensional sheet structure. The structures reported here expand the structural data base for compounds of this series formed from the facile reaction of cis-cyclohexane-1,2-dicarboxylic anhydride with substituted anilines, in which there is a much larger incidence of cyclic imides compared to amide carboxylic acids.
Resumo:
This study proceeds from a central interest in the importance of systematically evaluating operational large-scale integrated information systems (IS) in organisations. The study is conducted within the IS-Impact Research Track at Queensland University of Technology (QUT). The goal of the IS-Impact Track is, "to develop the most widely employed model for benchmarking information systems in organizations for the joint benefit of both research and practice" (Gable et al, 2009). The track espouses programmatic research having the principles of incrementalism, tenacity, holism and generalisability through replication and extension research strategies. Track efforts have yielded the bicameral IS-Impact measurement model; the ‘impact’ half includes Organisational-Impact and Individual-Impact dimensions; the ‘quality’ half includes System-Quality and Information-Quality dimensions. Akin to Gregor’s (2006) analytic theory, the ISImpact model is conceptualised as a formative, multidimensional index and is defined as "a measure at a point in time, of the stream of net benefits from the IS, to date and anticipated, as perceived by all key-user-groups" (Gable et al., 2008, p: 381). The study adopts the IS-Impact model (Gable, et al., 2008) as its core theory base. Prior work within the IS-Impact track has been consciously constrained to Financial IS for their homogeneity. This study adopts a context-extension strategy (Berthon et al., 2002) with the aim "to further validate and extend the IS-Impact measurement model in a new context - i.e. a different IS - Human Resources (HR)". The overarching research question is: "How can the impacts of large-scale integrated HR applications be effectively and efficiently benchmarked?" This managerial question (Cooper & Emory, 1995) decomposes into two more specific research questions – In the new HR context: (RQ1): "Is the IS-Impact model complete?" (RQ2): "Is the ISImpact model valid as a 1st-order formative, 2nd-order formative multidimensional construct?" The study adhered to the two-phase approach of Gable et al. (2008) to hypothesise and validate a measurement model. The initial ‘exploratory phase’ employed a zero base qualitative approach to re-instantiating the IS-Impact model in the HR context. The subsequent ‘confirmatory phase’ sought to validate the resultant hypothesised measurement model against newly gathered quantitative data. The unit of analysis for the study is the application, ‘ALESCO’, an integrated large-scale HR application implemented at Queensland University of Technology (QUT), a large Australian university (with approximately 40,000 students and 5000 staff). Target respondents of both study phases were ALESCO key-user-groups: strategic users, management users, operational users and technical users, who directly use ALESCO or its outputs. An open-ended, qualitative survey was employed in the exploratory phase, with the objective of exploring the completeness and applicability of the IS-Impact model’s dimensions and measures in the new context, and to conceptualise any resultant model changes to be operationalised in the confirmatory phase. Responses from 134 ALESCO users to the main survey question, "What do you consider have been the impacts of the ALESCO (HR) system in your division/department since its implementation?" were decomposed into 425 ‘impact citations.’ Citation mapping using a deductive (top-down) content analysis approach instantiated all dimensions and measures of the IS-Impact model, evidencing its content validity in the new context. Seeking to probe additional (perhaps negative) impacts; the survey included the additional open question "In your opinion, what can be done better to improve the ALESCO (HR) system?" Responses to this question decomposed into a further 107 citations which in the main did not map to IS-Impact, but rather coalesced around the concept of IS-Support. Deductively drawing from relevant literature, and working inductively from the unmapped citations, the new ‘IS-Support’ construct, including the four formative dimensions (i) training, (ii) documentation, (iii) assistance, and (iv) authorisation (each having reflective measures), was defined as: "a measure at a point in time, of the support, the [HR] information system key-user groups receive to increase their capabilities in utilising the system." Thus, a further goal of the study became validation of the IS-Support construct, suggesting the research question (RQ3): "Is IS-Support valid as a 1st-order reflective, 2nd-order formative multidimensional construct?" With the aim of validating IS-Impact within its nomological net (identification through structural relations), as in prior work, Satisfaction was hypothesised as its immediate consequence. The IS-Support construct having derived from a question intended to probe IS-Impacts, too was hypothesised as antecedent to Satisfaction, thereby suggesting the research question (RQ4): "What is the relative contribution of IS-Impact and IS-Support to Satisfaction?" With the goal of testing the above research questions, IS-Impact, IS-Support and Satisfaction were operationalised in a quantitative survey instrument. Partial least squares (PLS) structural equation modelling employing 221 valid responses largely evidenced the validity of the commencing IS-Impact model in the HR context. ISSupport too was validated as operationalised (including 11 reflective measures of its 4 formative dimensions). IS-Support alone explained 36% of Satisfaction; IS-Impact alone 70%; in combination both explaining 71% with virtually all influence of ISSupport subsumed by IS-Impact. Key study contributions to research include: (1) validation of IS-Impact in the HR context, (2) validation of a newly conceptualised IS-Support construct as important antecedent of Satisfaction, and (3) validation of the redundancy of IS-Support when gauging IS-Impact. The study also makes valuable contributions to practice, the research track and the sponsoring organisation.
Resumo:
One of the fundamental econometric models in finance is predictive regression. The standard least squares method produces biased coefficient estimates when the regressor is persistent and its innovations are correlated with those of the dependent variable. This article proposes a general and convenient method based on the jackknife technique to tackle the estimation problem. The proposed method reduces the bias for both single- and multiple-regressor models and for both short- and long-horizon regressions. The effectiveness of the proposed method is demonstrated by simulations. An empirical application to equity premium prediction using the dividend yield and the short rate highlights the differences between the results by the standard approach and those by the bias-reduced estimator. The significant predictive variables under the ordinary least squares become insignificant after adjusting for the finite-sample bias. These discrepancies suggest that bias reduction in predictive regressions is important in practical applications.
Resumo:
Reliable ambiguity resolution (AR) is essential to Real-Time Kinematic (RTK) positioning and its applications, since incorrect ambiguity fixing can lead to largely biased positioning solutions. A partial ambiguity fixing technique is developed to improve the reliability of AR, involving partial ambiguity decorrelation (PAD) and partial ambiguity resolution (PAR). Decorrelation transformation could substantially amplify the biases in the phase measurements. The purpose of PAD is to find the optimum trade-off between decorrelation and worst-case bias amplification. The concept of PAR refers to the case where only a subset of the ambiguities can be fixed correctly to their integers in the integer least-squares (ILS) estimation system at high success rates. As a result, RTK solutions can be derived from these integer-fixed phase measurements. This is meaningful provided that the number of reliably resolved phase measurements is sufficiently large for least-square estimation of RTK solutions as well. Considering the GPS constellation alone, partially fixed measurements are often insufficient for positioning. The AR reliability is usually characterised by the AR success rate. In this contribution an AR validation decision matrix is firstly introduced to understand the impact of success rate. Moreover the AR risk probability is included into a more complete evaluation of the AR reliability. We use 16 ambiguity variance-covariance matrices with different levels of success rate to analyse the relation between success rate and AR risk probability. Next, the paper examines during the PAD process, how a bias in one measurement is propagated and amplified onto many others, leading to more than one wrong integer and to affect the success probability. Furthermore, the paper proposes a partial ambiguity fixing procedure with a predefined success rate criterion and ratio-test in the ambiguity validation process. In this paper, the Galileo constellation data is tested with simulated observations. Numerical results from our experiment clearly demonstrate that only when the computed success rate is very high, the AR validation can provide decisions about the correctness of AR which are close to real world, with both low AR risk and false alarm probabilities. The results also indicate that the PAR procedure can automatically chose adequate number of ambiguities to fix at given high-success rate from the multiple constellations instead of fixing all the ambiguities. This is a benefit that multiple GNSS constellations can offer.
Resumo:
Linear adaptive channel equalization using the least mean square (LMS) algorithm and the recursive least-squares(RLS) algorithm for an innovative multi-user (MU) MIMOOFDM wireless broadband communications system is proposed. The proposed equalization method adaptively compensates the channel impairments caused by frequency selectivity in the propagation environment. Simulations for the proposed adaptive equalizer are conducted using a training sequence method to determine optimal performance through a comparative analysis. Results show an improvement of 0.15 in BER (at a SNR of 16 dB) when using Adaptive Equalization and RLS algorithm compared to the case in which no equalization is employed. In general, adaptive equalization using LMS and RLS algorithms showed to be significantly beneficial for MU-MIMO-OFDM systems.