99 resultados para Large-scale gradient
Resumo:
In elite sports, nearly all performances are captured on video. Despite the massive amounts of video that has been captured in this domain over the last 10-15 years, most of it remains in an 'unstructured' or 'raw' form, meaning it can only be viewed or manually annotated/tagged with higher-level event labels which is time consuming and subjective. As such, depending on the detail or depth of annotation, the value of the collected repositories of archived data is minimal as it does not lend itself to large-scale analysis and retrieval. One such example is swimming, where each race of a swimmer is captured on a camcorder and in-addition to the split-times (i.e., the time it takes for each lap), stroke rate and stroke-lengths are manually annotated. In this paper, we propose a vision-based system which effectively 'digitizes' a large collection of archived swimming races by estimating the location of the swimmer in each frame, as well as detecting the stroke rate. As the videos are captured from moving hand-held cameras which are located at different positions and angles, we show our hierarchical-based approach to tracking the swimmer and their different parts is robust to these issues and allows us to accurately estimate the swimmer location and stroke rates.
Resumo:
Accurate three-dimensional representations of cultural heritage sites are highly valuable for scientific study, conservation, and educational purposes. In addition to their use for archival purposes, 3D models enable efficient and precise measurement of relevant natural and architectural features. Many cultural heritage sites are large and complex, consisting of multiple structures spatially distributed over tens of thousands of square metres. The process of effectively digitising such geometrically complex locations requires measurements to be acquired from a variety of viewpoints. While several technologies exist for capturing the 3D structure of objects and environments, none are ideally suited to complex, large-scale sites, mainly due to their limited coverage or acquisition efficiency. We explore the use of a recently developed handheld mobile mapping system called Zebedee in cultural heritage applications. The Zebedee system is capable of efficiently mapping an environment in three dimensions by continually acquiring data as an operator holding the device traverses through the site. The system was deployed at the former Peel Island Lazaret, a culturally significant site in Queensland, Australia, consisting of dozens of buildings of various sizes spread across an area of approximately 400 × 250 m. With the Zebedee system, the site was scanned in half a day, and a detailed 3D point cloud model (with over 520 million points) was generated from the 3.6 hours of acquired data in 2.6 hours. We present results demonstrating that Zebedee was able to accurately capture both site context and building detail comparable in accuracy to manual measurement techniques, and at a greatly increased level of efficiency and scope. The scan allowed us to record derelict buildings that previously could not be measured because of the scale and complexity of the site. The resulting 3D model captures both interior and exterior features of buildings, including structure, materials, and the contents of rooms.
Resumo:
1.Marine ecosystems provide critically important goods and services to society, and hence their accelerated degradation underpins an urgent need to take rapid, ambitious and informed decisions regarding their conservation and management. 2.The capacity, however, to generate the detailed field data required to inform conservation planning at appropriate scales is limited by time and resource consuming methods for collecting and analysing field data at the large scales required. 3.The ‘Catlin Seaview Survey’, described here, introduces a novel framework for large-scale monitoring of coral reefs using high-definition underwater imagery collected using customized underwater vehicles in combination with computer vision and machine learning. This enables quantitative and geo-referenced outputs of coral reef features such as habitat types, benthic composition, and structural complexity (rugosity) to be generated across multiple kilometre-scale transects with a spatial resolution ranging from 2 to 6 m2. 4.The novel application of technology described here has enormous potential to contribute to our understanding of coral reefs and associated impacts by underpinning management decisions with kilometre-scale measurements of reef health. 5.Imagery datasets from an initial survey of 500 km of seascape are freely available through an online tool called the Catlin Global Reef Record. Outputs from the image analysis using the technologies described here will be updated on the online repository as work progresses on each dataset. 6.Case studies illustrate the utility of outputs as well as their potential to link to information from remote sensing. The potential implications of the innovative technologies on marine resource management and conservation are also discussed, along with the accuracy and efficiency of the methodologies deployed.
Resumo:
This paper presents an enhanced algorithm for matching laser scan maps using histogram correlations. The histogram representation effectively summarizes a map's salient features such that pairs of maps can be matched efficiently without any prior guess as to their alignment. The histogram matching algorithm has been enhanced in order to work well in outdoor unstructured environments by using entropy metrics, weighted histograms and proper thresholding of quality metrics. Thus our large-scale scan-matching SLAM implementation has a vastly improved ability to close large loops in real-time even when odometry is not available. Our experimental results have demonstrated a successful mapping of the largest area ever mapped to date using only a single laser scanner. We also demonstrate our ability to solve the lost robot problem by localizing a robot to a previously built map without any prior initialization.
Resumo:
The proliferation of the web presents an unsolved problem of automatically analyzing billions of pages of natural language. We introduce a scalable algorithm that clusters hundreds of millions of web pages into hundreds of thousands of clusters. It does this on a single mid-range machine using efficient algorithms and compressed document representations. It is applied to two web-scale crawls covering tens of terabytes. ClueWeb09 and ClueWeb12 contain 500 and 733 million web pages and were clustered into 500,000 to 700,000 clusters. To the best of our knowledge, such fine grained clustering has not been previously demonstrated. Previous approaches clustered a sample that limits the maximum number of discoverable clusters. The proposed EM-tree algorithm uses the entire collection in clustering and produces several orders of magnitude more clusters than the existing algorithms. Fine grained clustering is necessary for meaningful clustering in massive collections where the number of distinct topics grows linearly with collection size. These fine-grained clusters show an improved cluster quality when assessed with two novel evaluations using ad hoc search relevance judgments and spam classifications for external validation. These evaluations solve the problem of assessing the quality of clusters where categorical labeling is unavailable and unfeasible.
Resumo:
Automated digital recordings are useful for large-scale temporal and spatial environmental monitoring. An important research effort has been the automated classification of calling bird species. In this paper we examine a related task, retrieval of birdcalls from a database of audio recordings, similar to a user supplied query call. Such a retrieval task can sometimes be more useful than an automated classifier. We compare three approaches to similarity-based birdcall retrieval using spectral ridge features and two kinds of gradient features, structure tensor and the histogram of oriented gradients. The retrieval accuracy of our spectral ridge method is 94% compared to 82% for the structure tensor method and 90% for the histogram of gradients method. Additionally, this approach potentially offers a more compact representation and is more computationally efficient.
Resumo:
IODP Expedition 340 successfully drilled a series of sites offshore Montserrat, Martinique and Dominica in the Lesser Antilles from March to April 2012. These are among the few drill sites gathered around volcanic islands, and the first scientific drilling of large and likely tsunamigenic volcanic island-arc landslide deposits. These cores provide evidence and tests of previous hypotheses for the composition and origin of those deposits. Sites U1394, U1399, and U1400 that penetrated landslide deposits recovered exclusively seafloor sediment, comprising mainly turbidites and hemipelagic deposits, and lacked debris avalanche deposits. This supports the concepts that i/ volcanic debris avalanches tend to stop at the slope break, and ii/ widespread and voluminous failures of preexisting low-gradient seafloor sediment can be triggered by initial emplacement of material from the volcano. Offshore Martinique (U1399 and 1400), the landslide deposits comprised blocks of parallel strata that were tilted or microfaulted, sometimes separated by intervals of homogenized sediment (intense shearing), while Site U1394 offshore Montserrat penetrated a flat-lying block of intact strata. The most likely mechanism for generating these large-scale seafloor sediment failures appears to be propagation of a decollement from proximal areas loaded and incised by a volcanic debris avalanche. These results have implications for the magnitude of tsunami generation. Under some conditions, volcanic island landslide deposits composed of mainly seafloor sediment will tend to form smaller magnitude tsunamis than equivalent volumes of subaerial block-rich mass flows rapidly entering water. Expedition 340 also successfully drilled sites to access the undisturbed record of eruption fallout layers intercalated with marine sediment which provide an outstanding high-resolution data set to analyze eruption and landslides cycles, improve understanding of magmatic evolution as well as offshore sedimentation processes.
Resumo:
Any kind of imbalance in the operation of a wind turbine has adverse effect on the downstream torsional components as well as tower structure. It is crucial to detect imbalance at its very inception. The identification of the type of imbalance is also required so that appropriate measures of fault accommodation can be performed in the control system. In particular, it is important to distinguish between mass and aerodynamic imbalance. While the former is gradually caused by a structural anomaly (e.g. ice deposition, moisture accumulation inside blade), the latter is generally associated to a fault in the pitch control system. This paper proposes a technique for the detection and identification of imbalance fault in large scale wind turbines. Unlike most other existing method it requires only the rotor speed signal which is readily available in existing turbines. Signature frequencies have been proposed in this work to identify imbalance type based on their physical phenomenology. The performance of this technique has been evaluated by simulations using an existing benchmark model. The effectiveness of the proposed method has been confirmed by the simulation results.
Resumo:
Scales provide optical disguise, low water drag and mechanical protection to fish, enabling them to survive catastrophic environmental disasters, predators and microorganisms. The unique structures and stacking sequences of fish scales inspired the fabrication of artificial nanostructures with salient optical, interfacial and mechanical properties. Herein, we describe fish-scale bio-inspired multifunctional ZnO nanostructures that have similar morphology and structure to the cycloid scales of the Asian Arowana. These nanostructured coatings feature tunable light refraction and reflection, modulated surface wettability and damage-tolerant mechanical properties. The salient properties of these multifunctional nanostructures are promising for applications in: - (i) optical coatings, sensing or lens arrays for use in reflective displays, packing, advertising and solar energy harvesting; - (ii) self-cleaning surfaces, including anti-smudge, anti-fouling and anti-fogging, and self-sterilizing surfaces, and; - (iii) mechanical/chemical barrier coatings. This study provides a low-cost and large-scale production method for the facile fabrication of these bio-inspired nanostructures and provides new insights for the development of novel functional materials for use in 'smart' structures and applications.