95 resultados para Inertial sensors


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective The aim of this study was to determine the linear acceleration, time-to-peak acceleration, and effect of hand position comparing 2 clinicians completing a thoracic manipulation. Methods Thirteen volunteers received a right- and left-“handed” prone thoracic manipulation while accelerations were recorded by an inertial sensor. Peak thrust acceleration and time-to-peak thrust were measured. Results There were differences in thrust acceleration between right- and left-handed techniques for one therapist. The mean peak thrust acceleration was different between therapists, with the more practiced therapist demonstrating greater peak thrust accelerations. Time-to-peak acceleration also revealed between therapist differences, with the more practiced therapist demonstrating shorter time-to-peak acceleration. Cavitation data suggested that manipulations with greater accelerations were more likely to result in cavitation. Conclusion The results of this study suggest that with greater frequency of use, therapists are likely to achieve greater accelerations and shorter time-to-peak accelerations. Furthermore, this study showed that an inertial sensor can be used to quantify important variables during thoracic manipulation and are able to detect intertherapist differences in technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Cervical Spinal Manipulation (CSM) is considered a high-level skill of the central nervous system because it requires bimanual coordinated rhythmical movements therefore necessitating training to achieve proficiency. The objective of the present study was to investigate the effect of real-time feedback on the performance of CSM. Methods Six postgraduate physiotherapy students attending a training workshop on Cervical Spine Manipulation Technique (CSMT) using inertial sensor derived real-time feedback participated in this study. The key variables were pre-manipulative position, angular displacement of the thrust and angular velocity of the thrust. Differences between variables before and after training were investigated using t-tests. Results There were no significant differences after training for the pre-manipulative position (rotation p = 0.549; side bending p = 0.312) or for thrust displacement (rotation p = 0.247; side bending p = 0.314). Thrust angular velocity demonstrated a significant difference following training for rotation (pre-training mean (sd) 48.9°/s (35.1); post-training mean (sd) 96.9°/s (53.9); p = 0.027) but not for side bending (p = 0.521). Conclusion Real-time feedback using an inertial sensor may be valuable in the development of specific manipulative skill. Future studies investigating manipulation could consider a randomized controlled trial using inertial sensor real time feedback compared to traditional training.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report describes a proof of concept for multi-rotor localised surveillance using a multi-spectral sensor for plant biosecurity applications. A literature review was conducted on previous applications using airborne multispectral imaging for plant biosecurity purposes. A ready built platform was purchased and modified in order to fit and provide suitable clearance for a Tetracam Mini-MCA multispectral camera. The appropriate risk management documents were developed allowing the platform and the multi-spectral camera to be tested extensively. However, due to technical difficulties with the platform the Mini- MCA was not mounted to the platform. Once a suitable platform is developed, future extensions can be conducted into the suitability of the Mini-MCA for airborne surveillance of Australian crops.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A biocompatible method for fabricating three-dimensional photonic crystals opens up unique opportunities for structurally coloured biodegradable materials, but also for implantable biosensing and targeted therapeutics on the microscale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For the first time, we have fabricated and tested conductometric sensors based on oxidized liquid galinstan towards NO2 and NH3 gases at low operating temperatures. Galinstan based films on silicon substrates have been studied with two different loadings. Surface morphology of the films was investigated by means of field emission scanning electron microscopy (FESEM). The sensor with higher galinstan loading showed a better sensitivity, which can be attributed to a higher surface area, as confirmed by SEM. At 100°C, a detection limit as low as 1 and 20 ppm was measured for NO2 and NH3, respectively.