136 resultados para Indo-Aryan languages.
Resumo:
Digital rights management allows information owners to control the use and dissemination of electronic documents via a machine-readable licence. Documents are distributed in a protected form such that they may only be used with trusted environments, and only in accordance with terms and conditions stated in the licence. Digital rights management has found uses in protecting copyrighted audio-visual productions, private personal information, and companies' trade secrets and intellectual property. This chapter describes a general model of digital rights management together with the technologies used to implement each component of a digital rights management system, and desribes how digital rights management can be applied to secure the distribution of electronic information in a variety of contexts.
Resumo:
To date, studies have focused on the acquisition of alphabetic second languages (L2s) in alphabetic first language (L1) users, demonstrating significant transfer effects. The present study examined the process from a reverse perspective, comparing logographic (Mandarin-Chinese) and alphabetic (English) L1 users in the acquisition of an artificial logographic script, in order to determine whether similar language-specific advantageous transfer effects occurred. English monolinguals, English-French bilinguals and Chinese-English bilinguals learned a small set of symbols in an artificial logographic script and were subsequently tested on their ability to process this script in regard to three main perspectives: L2 reading, L2 working memory (WM), and inner processing strategies. In terms of L2 reading, a lexical decision task on the artificial symbols revealed markedly faster response times in the Chinese-English bilinguals, indicating a logographic transfer effect suggestive of a visual processing advantage. A syntactic decision task evaluated the degree to which the new language was mastered beyond the single word level. No L1-specific transfer effects were found for artificial language strings. In order to investigate visual processing of the artificial logographs further, a series of WM experiments were conducted. Artificial logographs were recalled under concurrent auditory and visuo-spatial suppression conditions to disrupt phonological and visual processing, respectively. No L1-specific transfer effects were found, indicating no visual processing advantage of the Chinese-English bilinguals. However, a bilingual processing advantage was found indicative of a superior ability to control executive functions. In terms of L1 WM, the Chinese-English bilinguals outperformed the alphabetic L1 users when processing L1 words, indicating a language experience-specific advantage. Questionnaire data on the cognitive strategies that were deployed during the acquisition and processing of the artificial logographic script revealed that the Chinese-English bilinguals rated their inner speech as lower than the alphabetic L1 users, suggesting that they were transferring their phonological processing skill set to the acquisition and use of an artificial script. Overall, evidence was found to indicate that language learners transfer specific L1 orthographic processing skills to L2 logographic processing. Additionally, evidence was also found indicating that a bilingual history enhances cognitive performance in L2.
Resumo:
Throughout the twentieth century increased interest in the training of actors resulted in the emergence of a plethora of acting theories and innovative theatrical movements in Europe, the UK and the USA. The individuals or groups involved with the formulation of these theories and movements developed specific terminologies, or languages of acting, in an attempt to clearly articulate the nature and the practice of acting according to their particular pedagogy or theatrical aesthetic. Now at the dawning of the twenty-first century, Australia boasts quite a number of schools and university courses professing to train actors. This research aims to discover the language used in actor training on the east coast of Australia today. Using interviews with staff of the National Institute of Dramatic Art, the Victorian College of the Arts, and the Queensland University of Technology as the primary source of data, a constructivist grounded theory has emerged to assess the influence of last century‟s theatrical theorists and practitioners on Australian training and to ascertain the possibility of a distinctly Australian language of acting.
Resumo:
In the terminology of Logic programming, current search engines answer Sigma1 queries (formulas of the form where is a boolean combination of attributes). Such a query is determined by a particular sequence of keywords input by a user. In order to give more control to users, search engines will have to tackle more expressive queries, namely, Sigma2 queries (formulas of the form ). The purpose of the talk is to examine which directions could be explored in order to move towards more expressive languages, more powerful search engines, and the benefits that users should expect.
Resumo:
Keyword Spotting is the task of detecting keywords of interest within continu- ous speech. The applications of this technology range from call centre dialogue systems to covert speech surveillance devices. Keyword spotting is particularly well suited to data mining tasks such as real-time keyword monitoring and unre- stricted vocabulary audio document indexing. However, to date, many keyword spotting approaches have su®ered from poor detection rates, high false alarm rates, or slow execution times, thus reducing their commercial viability. This work investigates the application of keyword spotting to data mining tasks. The thesis makes a number of major contributions to the ¯eld of keyword spotting. The ¯rst major contribution is the development of a novel keyword veri¯cation method named Cohort Word Veri¯cation. This method combines high level lin- guistic information with cohort-based veri¯cation techniques to obtain dramatic improvements in veri¯cation performance, in particular for the problematic short duration target word class. The second major contribution is the development of a novel audio document indexing technique named Dynamic Match Lattice Spotting. This technique aug- ments lattice-based audio indexing principles with dynamic sequence matching techniques to provide robustness to erroneous lattice realisations. The resulting algorithm obtains signi¯cant improvement in detection rate over lattice-based audio document indexing while still maintaining extremely fast search speeds. The third major contribution is the study of multiple veri¯er fusion for the task of keyword veri¯cation. The reported experiments demonstrate that substantial improvements in veri¯cation performance can be obtained through the fusion of multiple keyword veri¯ers. The research focuses on combinations of speech background model based veri¯ers and cohort word veri¯ers. The ¯nal major contribution is a comprehensive study of the e®ects of limited training data for keyword spotting. This study is performed with consideration as to how these e®ects impact the immediate development and deployment of speech technologies for non-English languages.
Resumo:
The topic of the present work is to study the relationship between the power of the learning algorithms on the one hand, and the expressive power of the logical language which is used to represent the problems to be learned on the other hand. The central question is whether enriching the language results in more learning power. In order to make the question relevant and nontrivial, it is required that both texts (sequences of data) and hypotheses (guesses) be translatable from the “rich” language into the “poor” one. The issue is considered for several logical languages suitable to describe structures whose domain is the set of natural numbers. It is shown that enriching the language does not give any advantage for those languages which define a monadic second-order language being decidable in the following sense: there is a fixed interpretation in the structure of natural numbers such that the set of sentences of this extended language true in that structure is decidable. But enriching the original language even by only one constant gives an advantage if this language contains a binary function symbol (which will be interpreted as addition). Furthermore, it is shown that behaviourally correct learning has exactly the same power as learning in the limit for those languages which define a monadic second-order language with the property given above, but has more power in case of languages containing a binary function symbol. Adding the natural requirement that the set of all structures to be learned is recursively enumerable, it is shown that it pays o6 to enrich the language of arithmetics for both finite learning and learning in the limit, but it does not pay off to enrich the language for behaviourally correct learning.
Resumo:
The present paper motivates the study of mind change complexity for learning minimal models of length-bounded logic programs. It establishes ordinal mind change complexity bounds for learnability of these classes both from positive facts and from positive and negative facts. Building on Angluin’s notion of finite thickness and Wright’s work on finite elasticity, Shinohara defined the property of bounded finite thickness to give a sufficient condition for learnability of indexed families of computable languages from positive data. This paper shows that an effective version of Shinohara’s notion of bounded finite thickness gives sufficient conditions for learnability with ordinal mind change bound, both in the context of learnability from positive data and for learnability from complete (both positive and negative) data. Let Omega be a notation for the first limit ordinal. Then, it is shown that if a language defining framework yields a uniformly decidable family of languages and has effective bounded finite thickness, then for each natural number m >0, the class of languages defined by formal systems of length <= m: • is identifiable in the limit from positive data with a mind change bound of Omega (power)m; • is identifiable in the limit from both positive and negative data with an ordinal mind change bound of Omega × m. The above sufficient conditions are employed to give an ordinal mind change bound for learnability of minimal models of various classes of length-bounded Prolog programs, including Shapiro’s linear programs, Arimura and Shinohara’s depth-bounded linearly covering programs, and Krishna Rao’s depth-bounded linearly moded programs. It is also noted that the bound for learning from positive data is tight for the example classes considered.
Resumo:
Automatic spoken Language Identi¯cation (LID) is the process of identifying the language spoken within an utterance. The challenge that this task presents is that no prior information is available indicating the content of the utterance or the identity of the speaker. The trend of globalization and the pervasive popularity of the Internet will amplify the need for the capabilities spoken language identi¯ca- tion systems provide. A prominent application arises in call centers dealing with speakers speaking di®erent languages. Another important application is to index or search huge speech data archives and corpora that contain multiple languages. The aim of this research is to develop techniques targeted at producing a fast and more accurate automatic spoken LID system compared to the previous National Institute of Standards and Technology (NIST) Language Recognition Evaluation. Acoustic and phonetic speech information are targeted as the most suitable fea- tures for representing the characteristics of a language. To model the acoustic speech features a Gaussian Mixture Model based approach is employed. Pho- netic speech information is extracted using existing speech recognition technol- ogy. Various techniques to improve LID accuracy are also studied. One approach examined is the employment of Vocal Tract Length Normalization to reduce the speech variation caused by di®erent speakers. A linear data fusion technique is adopted to combine the various aspects of information extracted from speech. As a result of this research, a LID system was implemented and presented for evaluation in the 2003 Language Recognition Evaluation conducted by the NIST.
Resumo:
Component software has many benefits, most notably increased software re-use; however, the component software process places heavy burdens on programming language technology, which modern object-oriented programming languages do not address. In particular, software components require specifications that are both sufficiently expressive and sufficiently abstract, and, where possible, these specifications should be checked formally by the programming language. This dissertation presents a programming language called Mentok that provides two novel programming language features enabling improved specification of stateful component roles. Negotiable interfaces are interface types extended with protocols, and allow specification of changing method availability, including some patterns of out-calls and re-entrance. Type layers are extensions to module signatures that allow specification of abstract control flow constraints through the interfaces of a component-based application. Development of Mentok's unique language features included creation of MentokC, the Mentok compiler, and formalization of key properties of Mentok in mini-languages called MentokP and MentokL.
Resumo:
A one year mathematics project that focused on measurement was conducted with six Torres Strait Islander schools and communities. Its key focus was to contextualise the teaching and learning of measurement within the students’ culture, communities and home languages. There were six teachers and two teacher aides who participated in the project. This paper reports on the findings from the teachers’ and teacher aides’ survey questionnaire used in the first Professional Development session to identify: a) teachers’ experience of teaching in Torres Strait Islands, b) teachers’ beliefs about effective ways to teach Torres Strait Islander students, and c) contexualising measurement within Torres Strait Islander culture, Communities and home languages. A wide range of differing levels of knowledge and understanding about how to contextualise measurement to support student learning were identified and analysed. For example, an Indigenous teacher claimed that mathematics and the environment are relational, that is, they are not discrete and in isolation from one another, rather they interconnect with mathematical ideas emerging from the environment of the Torres Strait Communities.
Resumo:
Where object-oriented languages deal with objects as described by classes, model-driven development uses models, as graphs of interconnected objects, described by metamodels. A number of new languages have been and continue to be developed for this model- based paradigm, both for model transformation and for general programming using models. Many of these use single-object approaches to typing, derived from solutions found in object-oriented systems, while others use metamodels as model types, but without a clear notion of polymorphism. Both of these approaches lead to brittle and overly restrictive reuse characteristics. In this paper we propose a simple extension to object-oriented typing to better cater for a model-oriented context, including a simple strategy for typing models as a collection of interconnected objects. We suggest extensions to existing type system formalisms to support these concepts and their manipulation. Using a simple example we show how this extended approach permits more flexible reuse, while preserving type safety.