195 resultados para Glycemic load
Resumo:
The objective of this research was to investigate the effect of suspension parameters on dynamic load-sharing of longitudinal-connected air suspensions of a tri-axle semi-trailer. A novel nonlinear model of a multi-axle semi-trailer with longitudinal-connected air suspension was formulated based on fluid mechanics and thermodynamics and was validated through test results. The effects of suspension parameters on dynamic load-sharing and road-friendliness of the semi-trailer were analyzed. Simulation results indicate that the road-friendliness metric DLC (Dynamic Load Coefficient), is generally in accordance with the load-sharing metric - DLSC (Dynamic Load Sharing Coefficient). When the static height or static pressure increases, the DLSC optimization ratio declines monotonically. The effect of employing larger air lines and connectors on the DLSC optimization ratio gives varying results as road roughness increases and as driving speed increases. The results also indicate that if the air line diameter is always assumed to be larger than the connector diameter, the influence of air line diameter on load-sharing is more significant than that of the connector.
Resumo:
Performance of urban transit systems may be quantified and assessed using transit capacity and productive capacity in planning, design and operational management activities. Bunker (4) defines important productive performance measures of an individual transit service and transit line, which are extended in this paper to quantify efficiency and operating fashion of transit services and lines. Comparison of a hypothetical bus line’s operation during a morning peak hour and daytime hour demonstrates the usefulness of productiveness efficiency and passenger transmission efficiency, passenger churn and average proportion line length traveled to the operator in understanding their services’ and lines’ productive performance, operating characteristics, and quality of service. Productiveness efficiency can flag potential pass-up activity under high load conditions, as well as ineffective resource deployment. Proportion line length traveled can directly measure operating fashion. These measures can be used to compare between lines/routes and, within a given line, various operating scenarios and time horizons to target improvements. The next research stage is investigating within-line variation using smart card passenger data and field observation of pass-ups. Insights will be used to further develop practical guidance to operators.
Resumo:
Performance of urban transit systems may be quantified and assessed using transit capacity and productive capacity in planning, design and operational management activities. Bunker (4) defines important productive performance measures of an individual transit service and transit line, which are extended in this paper to quantify efficiency and operating fashion of transit services and lines. Comparison of a hypothetical bus line’s operation during a morning peak hour and daytime hour demonstrates the usefulness of productiveness efficiency and passenger transmission efficiency, passenger churn and average proportion line length traveled to the operator in understanding their services’ and lines’ productive performance, operating characteristics, and quality of service. Productiveness efficiency can flag potential pass-up activity under high load conditions, as well as ineffective resource deployment. Proportion line length traveled can directly measure operating fashion. These measures can be used to compare between lines/routes and, within a given line, various operating scenarios and time horizons to target improvements. The next research stage is investigating within-line variation using smart card passenger data and field observation of pass-ups. Insights will be used to further develop practical guidance to operators.
Resumo:
In this paper, a new comprehensive planning methodology is proposed for implementing distribution network reinforcement. The load growth, voltage profile, distribution line loss, and reliability are considered in this procedure. A time-segmentation technique is employed to reduce the computational load. Options considered range from supporting the load growth using the traditional approach of upgrading the conventional equipment in the distribution network, through to the use of dispatchable distributed generators (DDG). The objective function is composed of the construction cost, loss cost and reliability cost. As constraints, the bus voltages and the feeder currents should be maintained within the standard level. The DDG output power should not be less than a ratio of its rated power because of efficiency. A hybrid optimization method, called modified discrete particle swarm optimization, is employed to solve this nonlinear and discrete optimization problem. A comparison is performed between the optimized solution based on planning of capacitors along with tap-changing transformer and line upgrading and when DDGs are included in the optimization.
Resumo:
Load modeling plays an important role in power system dynamic stability assessment. One of the widely used methods in assessing load model impact on system dynamic response is through parametric sensitivity analysis. Load ranking provides an effective measure of such impact. Traditionally, load ranking is based on either static or dynamic load model alone. In this paper, composite load model based load ranking framework is proposed. It enables comprehensive investigation into load modeling impacts on system stability considering the dynamic interactions between load and system dynamics. The impact of load composition on the overall sensitivity and therefore on ranking of the load is also investigated. Dynamic simulations are performed to further elucidate the results obtained through sensitivity based load ranking approach.
Resumo:
The well-established under-frequency load shedding (UFLS) is deemed to be the last of effective remedial measures against a severe frequency decline of a power system. With the ever-increasing size of power systems and the extensive penetration of distributed generators (DGs) in power systems, the problem of developing an optimal UFLS strategy is facing some new challenges. Given this background, an optimal UFLS strategy for a distribution system with DGs and load static characteristics taken into consideration is developed. Based on the frequency and the rate of change of frequency, the presented strategy consists of several basic rounds and a special round. In the basic round, the frequency emergency can be alleviated by quickly shedding some loads. In the special round, the frequency security can be maintained, and the operating parameters of the distribution system can be optimized by adjusting the output powers of DGs and some loads. The modified IEEE 37-node test feeder is employed to demonstrate the essential features of the developed optimal UFLS strategy in the MATLAB/SIMULINK environment.
Resumo:
Fire safety has become an important part in structural design due to the ever increasing loss of properties and lives during fires. Fire rating of load bearing wall systems made of Light gauge Steel Frames (LSF) is determined using fire tests based on the standard time-temperature curve given in ISO 834. However, modern residential buildings make use of thermoplastic materials, which mean considerably high fuel loads. Hence a detailed fire research study into the performance of load bearing LSF walls was undertaken using a series of realistic design fire curves developed based on Eurocode parametric curves and Barnett’s BFD curves. It included both full scale fire tests and numerical studies of LSF walls without any insulation, and the recently developed externally insulated composite panels. This paper presents the details of fire tests first, and then the numerical models of tested LSF wall studs. It shows that suitable finite element models can be developed to predict the fire rating of load bearing walls under real fire conditions. The paper also describes the structural and fire performances of externally insulated LSF walls in comparison to the non-insulated walls under real fires, and highlights the effects of standard and real fire curves on fire performance of LSF walls.
Resumo:
Compared to conventional metal-foil strain gauges, nanocomposite piezoresistive strain sensors have demonstrated high strain sensitivity and have been attracting increasing attention in recent years. To fulfil their ultimate success, the performance of vapor growth carbon fiber (VGCF)/epoxy nanocomposite strain sensors subjected to static cyclic loads was evaluated in this work. A strain-equivalent quantity (resistance change ratio) in cantilever beams with intentionally induced notches in bending was evaluated using the conventional metal-foil strain gauges and the VGCF/epoxy nanocomposite sensors. Compared to the metal-foil strain gauges, the nanocomposite sensors are much more sensitive to even slight structural damage. Therefore, it was confirmed that the signal stability, reproducibility, and durability of these nanocomposite sensors are very promising, leading to the present endeavor to apply them for static structural health monitoring.
Resumo:
The objective of this research was to investigate the effects of driving conditions and suspension parameters on dynamic load-sharing of longitudinal-connected air suspensions of a tri-axle semi-trailer. A novel nonlinear model of a multi-axle semi-trailer with longitudinal-connected air suspension was formulated based on fluid mechanics and thermodynamics and was validated through test results. The effects of driving conditions and suspension parameters on dynamic load-sharing and road-friendliness of the semi-trailer were analyzed. Simulation results indicate that the road-friendliness metric-DLC (dynamic load coefficient) is not always in accordance with the load-sharing metric-DLSC (dynamic load-sharing coefficient). The effect of employing larger air lines and connectors on the DLSC optimization ratio gives varying results as road roughness increases and as driving speed increases. When the vehicle load reduces, or the static pressure increases, the DLSC optimization ratio declines monotonically. The results also indicate that if the air line diameter is always assumed to be larger than the connector diameter, the influence of air line diameter on load-sharing is more significant than that of the connector.
Resumo:
The conventional mechanical properties of articular cartilage, such as compressive stiffness, have been demonstrated to be limited in their capacity to distinguish intact (visually normal) from degraded cartilage samples. In this paper, we explore the correlation between a new mechanical parameter, namely the reswelling of articular cartilage following unloading from a given compressive load, and the near infrared (NIR) spectrum. The capacity to distinguish mechanically intact from proteoglycan-depleted tissue relative to the "reswelling" characteristic was first established, and the result was subsequently correlated with the NIR spectral data of the respective tissue samples. To achieve this, normal intact and enzymatically degraded samples were subjected to both NIR probing and mechanical compression based on a load-unload-reswelling protocol. The parameter δ(r), characteristic of the osmotic "reswelling" of the matrix after unloading to a constant small load in the order of the osmotic pressure of cartilage, was obtained for the different sample types. Multivariate statistics was employed to determine the degree of correlation between δ(r) and the NIR absorption spectrum of relevant specimens using Partial Least Squared (PLS) regression. The results show a strong relationship (R(2)=95.89%, p<0.0001) between the spectral data and δ(r). This correlation of δ(r) with NIR spectral data suggests the potential for determining the reswelling characteristics non-destructively. It was also observed that δ(r) values bear a significant relationship with the cartilage matrix integrity, indicated by its proteoglycan content, and can therefore differentiate between normal and artificially degraded proteoglycan-depleted cartilage samples. It is therefore argued that the reswelling of cartilage, which is both biochemical (osmotic) and mechanical (hydrostatic pressure) in origin, could be a strong candidate for characterizing the tissue, especially in regions surrounding focal cartilage defects in joints.
Resumo:
Restoring a large-scale power system has always been a complicated and important issue. A lot of research work has been done on different aspects of the whole power system restoration procedure. However, more time will be required to complete the power system restoration process in an actual situation if accurate and real-time system data cannot be obtained. With the development of the wide area monitoring system (WAMS), power system operators are capable of accessing to more accurate data in the restoration stage after a major outage. The ultimate goal of the system restoration is to restore as much load as possible while in the shortest period of time after a blackout, and the restorable load can be estimated by employing WAMS. Moreover, discrete restorable loads are employed considering the limited number of circuit-breaker operations and the practical topology of distribution systems. In this work, a restorable load estimation method is proposed employing WAMS data after the network frame has been reenergized, and WAMS is also employed to monitor the system parameters in case the newly recovered system becomes unstable again. The proposed method has been validated with the New England 39-Bus system and an actual power system in Guangzhou, China.
Resumo:
Fire safety of light gauge steel frame (LSF) stud walls is important in the design of buildings. Currently LSF walls are increasingly used in the building industry, and are usually made of cold-formed and thin-walled steel studs that are fire-protected by two layers of plasterboard on both sides. Many experimental and numerical studies have been undertaken to investigate the fire performance of load bearing LSF walls under standard fire conditions. However, the standard time-temperature curve does not represent the fire load present in typical residential and commercial buildings that include considerable amount of thermoplastic materials. Real building fires are unlikely to follow a standard time-temperature curve. However, only limited research has been undertaken to investigate the fire performance of load bearing LSF walls under realistic design fire conditions. Therefore in this research, finite element thermal models of the traditional LSF wall panels without cavity insulation and the new LSF composite wall panels were developed to simulate their fire performance under recently developed realistic design fire curves. Suitable thermal properties were proposed for plasterboards and insulations based on laboratory tests and literature review. The developed models were then validated by comparing their thermal performance results with available results from realistic design fire tests, and were later used in parametric studies. This paper presents the details of the developed finite element thermal models of load bearing LSF wall panels under realistic design fire time-temperature curves and the re-sults. It shows that finite element thermal models can be used to predict the fire performance of load bearing LSF walls with varying configurations of insulations and plasterboards under realistic design fires. Failure times of load bearing LSF walls were also predicted based on the results from finite element thermal analyses.
Resumo:
Sophisticated models of human social behaviour are fast becoming highly desirable in an increasingly complex and interrelated world. Here, we propose that rather than taking established theories from the physical sciences and naively mapping them into the social world, the advanced concepts and theories of social psychology should be taken as a starting point, and used to develop a new modelling methodology. In order to illustrate how such an approach might be carried out, we attempt to model the low elaboration attitude changes of a society of agents in an evolving social context. We propose a geometric model of an agent in context, where individual agent attitudes are seen to self-organise to form ideologies, which then serve to guide further agent-based attitude changes. A computational implementation of the model is shown to exhibit a number of interesting phenomena, including a tendency for a measure of the entropy in the system to decrease, and a potential for externally guiding a population of agents towards a new desired ideology.
Resumo:
Granulysin is a cytolytic granule protein released by natural killer cells and activated cytotoxic T lymphocytes. The influence of exercise training on circulating granulysin concentration is unknown, as is the relationship between granulysin concentration, natural killer cell number and natural killer cell cytotoxicity. We examined changes in plasma granulysin concentration, natural killer cell number and cytotoxicity following acute exercise and different training loads. Fifteen highly trained male cyclists completed a baseline 40-km cycle time trial (TT401) followed by five weeks of normal training and a repeat time trial (TT402). The cyclists then completed four days of high intensity training followed by another time trial (TT403) on day five. Following one final week of normal training cyclists completed another time trial (TT404). Fasting venous blood was collected before and after each time trial to determine granulysin concentration, natural killer cell number and natural killer cell cytotoxicity. Granulysin concentration increased significantly after each time trial (P<0.001). Pre-exercise granulysin concentration for TT403 was significantly lower than pre-exercise concentration for TT401 (-20.3 +/- 7.5%, P<0.026), TT402 (-16.7 +/- 4.3%, P<0.003) and 7T404 (-21 +/- 4.2%, P<0.001). Circulating natural killer cell numbers also increased significantly post-exercise for each time trial (P<0.001), however there was no significant difference across TT40 (P>0.05). Exercise did not significantly alter natural killer cell cytotoxicity on a per cell basis, and there were no significant differences between the four time trials. In conclusion, plasma granulysin concentration increases following moderate duration, strenuous exercise and is decreased in response to a short-term period of intensified training.