234 resultados para GENOMIC REARRANGEMENTS
Resumo:
Maize streak disease is a severe agricultural problem in Africa and the development of maize genotypes resistant to the causal agent, Maize streak virus (MSV), is a priority. A transgenic approach to engineering MSV-resistant maize was developed and tested in this study. A pathogen-derived resistance strategy was adopted by using targeted deletions and nucleotide-substitution mutants of the multifunctional MSV replication-associated protein gene (rep). Various rep gene constructs were tested for their efficacy in limiting replication of wild-type MSV by co-bombardment of maize suspension cells together with an infectious genomic clone of MSV and assaying replicative forms of DNA by quantitative PCR. Digitaria sanguinalis, an MSV-sensitive grass species used as a model monocot, was then transformed with constructs that had inhibited virus replication in the transient-expression system. Challenge experiments using leafhopper-transmitted MSV indicated significant MSV resistance - from highly resistant to immune - in regenerated transgenic D. sanguinalis lines. Whereas regenerated lines containing a mutated full-length rep gene displayed developmental and growth defects, those containing a truncated rep gene both were fertile and displayed no growth defects, making the truncated gene a suitable candidate for the development of transgenic MSV-resistant maize. © 2007 SGM.
Resumo:
Background. A variety of interactions between up to three different movement proteins (MPs), the coat protein (CP) and genomic DNA mediate the inter- and intra-cellular movement of geminiviruses in the genus Begomovirus. Although movement of viruses in the genus Mastrevirus is less well characterized, direct interactions between a single MP and the CP of these viruses is also clearly involved in both intra- and intercellular trafficking of virus genomic DNA. However, it is currently unknown how specific these MP-CP interactions are, nor how disruption of these interactions might impact on virus viability. Results. Using chimaeric genomes of two strains of Maize streak virus (MSV) we adopted a genetic approach to investigate the gross biological effects of interfering with interactions between virus MP and CP homologues derived from genetically distinct MSV isolates. MP and CP genes were reciprocally exchanged, individually and in pairs, between maize (MSV-Kom)- and Setaria sp. (MSV-Set)-adapted isolates sharing 78% genome-wide sequence identity. All chimaeras were infectious in Zea mays c.v. Jubilee and were characterized in terms of symptomatology and infection efficiency. Compared with their parental viruses, all the chimaeras were attenuated in symptom severity, infection efficiency, and the rate at which symptoms appeared. The exchange of individual MP and CP genes resulted in lower infection efficiency and reduced symptom severity in comparison with exchanges of matched MP-CP pairs. Conclusion. Specific interactions between the mastrevirus MP and CP genes themselves and/or their expression products are important determinants of infection efficiency, rate of symptom development and symptom severity. © 2008 van der Walt et al; licensee BioMed Central Ltd.
Resumo:
Background Maize streak virus -strain A (MSV-A; Genus Mastrevirus, Family Geminiviridae), the maize-adapted strain of MSV that causes maize streak disease throughout sub-Saharan Africa, probably arose between 100 and 200 years ago via homologous recombination between two MSV strains adapted to wild grasses. MSV recombination experiments and analyses of natural MSV recombination patterns have revealed that this recombination event entailed the exchange of the movement protein - coat protein gene cassette, bounded by the two genomic regions most prone to recombination in mastrevirus genomes; the first surrounding the virion-strand origin of replication, and the second around the interface between the coat protein gene and the short intergenic region. Therefore, aside from the likely adaptive advantages presented by a modular exchange of this cassette, these specific breakpoints may have been largely predetermined by the underlying mechanisms of mastrevirus recombination. To investigate this hypothesis, we constructed artificial, low-fitness, reciprocal chimaeric MSV genomes using alternating genomic segments from two MSV strains; a grass-adapted MSV-B, and a maize-adapted MSV-A. Between them, each pair of reciprocal chimaeric genomes represented all of the genetic material required to reconstruct - via recombination - the highly maize-adapted MSV-A genotype, MSV-MatA. We then co-infected a selection of differentially MSV-resistant maize genotypes with pairs of reciprocal chimaeras to determine the efficiency with which recombination would give rise to high-fitness progeny genomes resembling MSV-MatA. Results Recombinants resembling MSV-MatA invariably arose in all of our experiments. However, the accuracy and efficiency with which the MSV-MatA genotype was recovered across all replicates of each experiment depended on the MSV susceptibility of the maize genotypes used and the precise positions - in relation to known recombination hotspots - of the breakpoints required to re-create MSV-MatA. Although the MSV-sensitive maize genotype gave rise to the greatest variety of recombinants, the measured fitness of each of these recombinants correlated with their similarity to MSV-MatA. Conclusions The mechanistic predispositions of different MSV genomic regions to recombination can strongly influence the accessibility of high-fitness MSV recombinants. The frequency with which the fittest recombinant MSV genomes arise also correlates directly with the escalating selection pressures imposed by increasingly MSV-resistant maize hosts.
Resumo:
Exponential growth of genomic data in the last two decades has made manual analyses impractical for all but trial studies. As genomic analyses have become more sophisticated, and move toward comparisons across large datasets, computational approaches have become essential. One of the most important biological questions is to understand the mechanisms underlying gene regulation. Genetic regulation is commonly investigated and modelled through the use of transcriptional regulatory network (TRN) structures. These model the regulatory interactions between two key components: transcription factors (TFs) and the target genes (TGs) they regulate. Transcriptional regulatory networks have proven to be invaluable scientific tools in Bioinformatics. When used in conjunction with comparative genomics, they have provided substantial insights into the evolution of regulatory interactions. Current approaches to regulatory network inference, however, omit two additional key entities: promoters and transcription factor binding sites (TFBSs). In this study, we attempted to explore the relationships among these regulatory components in bacteria. Our primary goal was to identify relationships that can assist in reducing the high false positive rates associated with transcription factor binding site predictions and thereupon enhance the reliability of the inferred transcription regulatory networks. In our preliminary exploration of relationships between the key regulatory components in Escherichia coli transcription, we discovered a number of potentially useful features. The combination of location score and sequence dissimilarity scores increased de novo binding site prediction accuracy by 13.6%. Another important observation made was with regards to the relationship between transcription factors grouped by their regulatory role and corresponding promoter strength. Our study of E.coli ��70 promoters, found support at the 0.1 significance level for our hypothesis | that weak promoters are preferentially associated with activator binding sites to enhance gene expression, whilst strong promoters have more repressor binding sites to repress or inhibit gene transcription. Although the observations were specific to �70, they nevertheless strongly encourage additional investigations when more experimentally confirmed data are available. In our preliminary exploration of relationships between the key regulatory components in E.coli transcription, we discovered a number of potentially useful features { some of which proved successful in reducing the number of false positives when applied to re-evaluate binding site predictions. Of chief interest was the relationship observed between promoter strength and TFs with respect to their regulatory role. Based on the common assumption, where promoter homology positively correlates with transcription rate, we hypothesised that weak promoters would have more transcription factors that enhance gene expression, whilst strong promoters would have more repressor binding sites. The t-tests assessed for E.coli �70 promoters returned a p-value of 0.072, which at 0.1 significance level suggested support for our (alternative) hypothesis; albeit this trend may only be present for promoters where corresponding TFBSs are either all repressors or all activators. Nevertheless, such suggestive results strongly encourage additional investigations when more experimentally confirmed data will become available. Much of the remainder of the thesis concerns a machine learning study of binding site prediction, using the SVM and kernel methods, principally the spectrum kernel. Spectrum kernels have been successfully applied in previous studies of protein classification [91, 92], as well as the related problem of promoter predictions [59], and we have here successfully applied the technique to refining TFBS predictions. The advantages provided by the SVM classifier were best seen in `moderately'-conserved transcription factor binding sites as represented by our E.coli CRP case study. Inclusion of additional position feature attributes further increased accuracy by 9.1% but more notable was the considerable decrease in false positive rate from 0.8 to 0.5 while retaining 0.9 sensitivity. Improved prediction of transcription factor binding sites is in turn extremely valuable in improving inference of regulatory relationships, a problem notoriously prone to false positive predictions. Here, the number of false regulatory interactions inferred using the conventional two-component model was substantially reduced when we integrated de novo transcription factor binding site predictions as an additional criterion for acceptance in a case study of inference in the Fur regulon. This initial work was extended to a comparative study of the iron regulatory system across 20 Yersinia strains. This work revealed interesting, strain-specific difierences, especially between pathogenic and non-pathogenic strains. Such difierences were made clear through interactive visualisations using the TRNDifi software developed as part of this work, and would have remained undetected using conventional methods. This approach led to the nomination of the Yfe iron-uptake system as a candidate for further wet-lab experimentation due to its potential active functionality in non-pathogens and its known participation in full virulence of the bubonic plague strain. Building on this work, we introduced novel structures we have labelled as `regulatory trees', inspired by the phylogenetic tree concept. Instead of using gene or protein sequence similarity, the regulatory trees were constructed based on the number of similar regulatory interactions. While the common phylogentic trees convey information regarding changes in gene repertoire, which we might regard being analogous to `hardware', the regulatory tree informs us of the changes in regulatory circuitry, in some respects analogous to `software'. In this context, we explored the `pan-regulatory network' for the Fur system, the entire set of regulatory interactions found for the Fur transcription factor across a group of genomes. In the pan-regulatory network, emphasis is placed on how the regulatory network for each target genome is inferred from multiple sources instead of a single source, as is the common approach. The benefit of using multiple reference networks, is a more comprehensive survey of the relationships, and increased confidence in the regulatory interactions predicted. In the present study, we distinguish between relationships found across the full set of genomes as the `core-regulatory-set', and interactions found only in a subset of genomes explored as the `sub-regulatory-set'. We found nine Fur target gene clusters present across the four genomes studied, this core set potentially identifying basic regulatory processes essential for survival. Species level difierences are seen at the sub-regulatory-set level; for example the known virulence factors, YbtA and PchR were found in Y.pestis and P.aerguinosa respectively, but were not present in both E.coli and B.subtilis. Such factors and the iron-uptake systems they regulate, are ideal candidates for wet-lab investigation to determine whether or not they are pathogenic specific. In this study, we employed a broad range of approaches to address our goals and assessed these methods using the Fur regulon as our initial case study. We identified a set of promising feature attributes; demonstrated their success in increasing transcription factor binding site prediction specificity while retaining sensitivity, and showed the importance of binding site predictions in enhancing the reliability of regulatory interaction inferences. Most importantly, these outcomes led to the introduction of a range of visualisations and techniques, which are applicable across the entire bacterial spectrum and can be utilised in studies beyond the understanding of transcriptional regulatory networks.
Resumo:
In this issue of Cancer Discovery, Guagnano and colleagues use a large and diverse annotated collection of cancer cell lines, the Cancer Cell Line Encyclopedia, to correlate whole-genome expression and genomic alteration datasets with cell line sensitivity data to the novel pan-fibroblast growth factor receptor (FGFR) inhibitor NVP-BGJ398. Their findings underscore not only the preclinical use of such cell line panels in identifying predictive biomarkers, but also the emergence of the FGFRs as valid therapeutic targets, across an increasingly broad range of malignancies.
Resumo:
Background: A random QTL effects model uses a function of probabilities that two alleles in the same or in different animals at a particular genomic position are identical by descent (IBD). Estimates of such IBD probabilities and therefore, modeling and estimating QTL variances, depend on marker polymorphism, strength of linkage and linkage disequilibrium of markers and QTL, and the relatedness of animals in the pedigree. The effect of relatedness of animals in a pedigree on IBD probabilities and their characteristics was examined in a simulation study. Results: The study based on nine multi-generational family structures, similar to a pedigree structure of a real dairy population, distinguished by an increased level of inbreeding from zero to 28 % across the studied population. Highest inbreeding level in the pedigree, connected with highest relatedness, was accompanied by highest IBD probabilities of two alleles at the same locus, and by lower relative variation coefficients. Profiles of correlation coefficients of IBD probabilities along the marked chromosomal segment with those at the true QTL position were steepest when the inbreeding coefficient in the pedigree was highest. Precision of estimated QTL location increased with increasing inbreeding and pedigree relatedness. A method to assess the optimum level of inbreeding for QTL detection is proposed, depending on population parameters. Conclusions: An increased overall relationship in a QTL mapping design has positive effects on precision of QTL position estimates. But the relationship of inbreeding level and the capacity for QTL detection depending on the recombination rate of QTL and adjacent informative marker is not linear. © 2010 Freyer et al., licensee BioMed Central Ltd.
Resumo:
Previous studies have enabled exact prediction of probabilities of identity-by-descent (IBD) in randommating populations for a few loci (up to four or so), with extension to more using approximate regression methods. Here we present a precise predictor of multiple-locus IBD using simple formulas based on exact results for two loci. In particular, the probability of non-IBD X ABC at each of ordered loci A, B, and C can be well approximated by XABC = XABXBC/XB and generalizes to X123. . .k = X12X23. . .Xk-1,k/ Xk-2, where X is the probability of non-IBD at each locus. Predictions from this chain rule are very precise with population bottlenecks and migration, but are rather poorer in the presence of mutation. From these coefficients, the probabilities of multilocus IBD and non-IBD can also be computed for genomic regions as functions of population size, time, and map distances. An approximate but simple recurrence formula is also developed, which generally is less accurate than the chain rule but is more robust with mutation. Used together with the chain rule it leads to explicit equations for non-IBD in a region. The results can be applied to detection of quantitative trait loci (QTL) by computing the probability of IBD at candidate loci in terms of identity-by-state at neighboring markers.
Resumo:
The marsupial genus Macropus includes three subgenera, the familiar large grazing kangaroos and wallaroos of M. (Macropus) and M. (Osphranter), as well as the smaller mixed grazing/browsing wallabies of M. (Notamacropus). A recent study of five concatenated nuclear genes recommended subsuming the predominantly browsing Wallabia bicolor (swamp wallaby) into Macropus. To further examine this proposal we sequenced partial mitochondrial genomes for kangaroos and wallabies. These sequences strongly favour the morphological placement of W. bicolor as sister to Macropus, although place M. irma (black-gloved wallaby) within M. (Osphranter) rather than as expected, with M. (Notamacropus). Species tree estimation from separately analysed mitochondrial and nuclear genes favours retaining Macropus and Wallabia as separate genera. A simulation study finds that incomplete lineage sorting among nuclear genes is a plausible explanation for incongruence with the mitochondrial placement of W. bicolor, while mitochondrial introgression from a wallaroo into M. irma is the deepest such event identified in marsupials. Similar such coalescent simulations for interpreting gene tree conflicts will increase in both relevance and statistical power as species-level phylogenetics enters the genomic age. Ecological considerations in turn, hint at a role for selection in accelerating the fixation of introgressed or incompletely sorted loci. More generally the inclusion of the mitochondrial sequences substantially enhanced phylogenetic resolution. However, we caution that the evolutionary dynamics that enhance mitochondria as speciation indicators in the presence of incomplete lineage sorting may also render them especially susceptible to introgression.
Resumo:
In eukaryotes, genomic DNA is tightly compacted into a protein-DNA complex known as chromatin. This dense structure presents a barrier to DNA-dependent processes including transcription, replication and DNA repair. The repressive structure of chromatin is overcome by ATP-dependent chromatin remodelling complexes and chromatin-modifying enzymes. There is now ample evidence that DNA double-strand breaks (DSBs) elicit various histone modifications (such as acetylation, deacetylation, and phosphorylation) that function combinatorially to control the dynamic structure of the chromatin microenvironment. The role of these mechanisms during transcription and replication has been well studied, while the research into their impact on regulation of DNA damage response is rapidly gaining momentum. How chromatin structure is remodeled in response to DNA damage and how such alterations influence DSB repair are currently significant questions. This review will summarise the major chromatin modifications and chromatin remodelling complexes implicated in the DNA damage response to DSBs.
Resumo:
This study used next generation sequencing technologies to investigate growth in a cultured crustacean. The objective was to identify and characterise specific gene loci that contribute important phenotypic variation to growth as well as to develop a large set of SNP markers in candidate genes for assessing correlations between specific mutations and individual growth performance. The genomic dataset generated provides a fundamental resource for application in future crustacean stock improvement programs. Ultimately, the data can be applied to development of culture lines with improved growth performance.
Resumo:
Forty-six bottled water samples representing 16 brands from Dhaka, Bangladesh were tested for the numbers of total coliforms, fecal indicator bacteria (i.e., thermotolerant Escherichia coli and Enterococcus spp.) and potential bacterial pathogens (i.e., Aeromonas hydrophil, Pseudomonas aeruginos, Salmonella spp., and Shigella spp.). Among the 16 brands tested, 14 (86%), ten (63%) and seven (44%) were positive for total coliforms, E. coil and Enterococcus spp., respectively. Additionally, a further nine (56%), eight (50%), six (37%), and four (25%) brands were PCR positive for A. hydrophila lip, P. aeruginosa ETA, Salmonella spp. invA, and Shigella spp. ipaH genes, respectively. The numbers of bacterial pathogens in bottled water samples ranged from 28 ± 12 to 600 ± 45 (A. hydrophila lip gene), 180 ± 40 to 900 ± 200 (Salmonella spp. invA gene), 180 ± 40 to 1,300 ± 400 (P. aeruginosa ETA gene) genomic units per L of water. Shigella spp. ipaH gene was not quantifiable. Discrepancies were observed in terms of the occurrence of fecal indicators and bacterial pathogens. No correlations were observed between fecal indicators numbers and presence/absence of A. hydrophila lip (p = 0.245), Salmonella spp. invA (p = 0.433), Shigella spp. ipaH gene (p = 0.078), and P. aeruginosa ETA (p = 0.059) genes. Our results suggest that microbiological quality of bottled waters sold in Dhaka, Bangladesh is highly variable. To protect public health, stringent quality control is recommended for the bottled water industry in Bangladesh. Key words: bottled water, fecal indicator bacteria, quantitative PCR, bacterial pathogens, public health risk.
Resumo:
BACKGROUND AND AIMS: Crohn's disease (CD) is an inflammatory bowel disease (IBD) caused by a combination of genetic, clinical, and environmental factors. Identification of CD patients at high risk of requiring surgery may assist clinicians to decide on a top-down or step-up treatment approach. METHODS: We conducted a retrospective case-control analysis of a population-based cohort of 503 CD patients. A regression-based data reduction approach was used to systematically analyse 63 genomic, clinical and environmental factors for association with IBD-related surgery as the primary outcome variable. RESULTS: A multi-factor model was identified that yielded the highest predictive accuracy for need for surgery. The factors included in the model were the NOD2 genotype (OR = 1.607, P = 2.3 × 10(-5)), having ever had perianal disease (OR = 2.847, P = 4 × 10(-6)), being post-diagnosis smokers (OR = 6.312, P = 7.4 × 10(-3)), being an ex-smoker at diagnosis (OR = 2.405, P = 1.1 × 10(-3)) and age (OR = 1.012, P = 4.4 × 10(-3)). Diagnostic testing for this multi-factor model produced an area under the curve of 0.681 (P = 1 × 10(-4)) and an odds ratio of 3.169, (95 % CI P = 1 × 10(-4)) which was higher than any factor considered independently. CONCLUSIONS: The results of this study require validation in other populations but represent a step forward in the development of more accurate prognostic tests for clinicians to prescribe the most optimal treatment approach for complicated CD patients.
Resumo:
Migraine is a common neurological disorder with a significantly heritable component. It is a complex disease and despite numerous molecular genetic studies, the exact pathogenesis causing the neurological disturbance remains poorly understood. Although several known molecular mechanisms have been associated with an increased risk for developing migraine, there remains significant scope for future studies. The majority of studies have investigated the most plausible candidate genes involved in common migraine pathogenesis utilising criteria that takes into account a combination of physiological functionality in conjunction with regions of genomic association. Thus, far genes involved in neurological, vascular or hormonal pathways have been identified and investigated on this basis. Genome-wide association studies (GWAS) studies have helped to identify novel regions that may be associated with migraine and have aided in providing the basis for further molecular investigations. However, further studies utilising sequencing technologies are required to characterise the genetic basis for migraine.
Resumo:
Migraine is a neurological disorder that affects the central nervous system causing painful attacks of headache. A genetic vulnerability and exposure to environmental triggers can influence the migraine phenotype. Migraine interferes in many facets of people’s daily life including employment commitments and their ability to look after their families resulting in a reduced quality of life. Identification of the biological processes that underlie this relatively common affliction has been difficult because migraine does not have any clearly identifiable pathology or structural lesion detectable by current medical technology. Theories to explain the symptoms of migraine have focused on the physiological mechanisms involved in the various phases of headache and include the vascular and neurogenic theories. In relation to migraine pathophysiology the trigeminovascular system and cortical spreading depression have also been implicated with supporting evidence from imaging studies and animal models. The objective of current research is to better understand the pathways and mechanisms involved in causing pain and headache to be able to target interventions. The genetic component of migraine has been teased apart using linkage studies and both candidate gene and genome-wide association studies, in family and case-control cohorts. Genomic regions that increase individual risk to migraine have been identified in neurological, vascular and hormonal pathways. This review discusses knowledge of the pathophysiology and genetic basis of migraine with the latest scientific evidence from genetic studies.
Resumo:
Adaptation to replicate environments is often achieved through similar phenotypic solutions. Whether selection also produces convergent genomic changes in these situations remains largely unknown. The variable groundsel, Senecio lautus, is an excellent system to investigate the genetic underpinnings of convergent evolution, because morphologically similar forms of these plants have adapted to the same environments along the coast of Australia. We compared range-wide patterns of genomic divergence in natural populations of this plant and searched for regions putatively affected by natural selection. Our results indicate that environmental adaptation followed complex genetic trajectories, affecting multiple loci, implying both the parallel recruitment of the same alleles and the divergence of completely different genomic regions across geography. An analysis of the biological functions of candidate genes suggests that adaptation to coastal environments may have occurred through the recruitment of different genes participating in similar processes. The relatively low genetic convergence that characterizes the parallel evolution of S. lautus forms suggests that evolution is more constrained at higher levels of biological organization.