135 resultados para GARCIA LORCA, FEDERICO


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cultural and creative industries are closely intertwined with government. This chapter reviews key economic rationales for public policy interventions for the arts, cultural and creative industries. Market failure justifications depend on the status of arts and culture as non-rival public goods, as ‘merit goods’, or the need to moderate the effects of up-front investment costs or monopoly, and the inherent uncertainty of creative production. ‘Systems failure’ too is a regular rationale for policy intervention. Using the United Kingdom as an example, the chapter shows how emphasis on these rationales has shifted over the last three decades, first in the context of industrial policies for traditional aims such as exports and job growth, which have been joined in recent years by the need for investment in intangibles, knowledge exchange, and spillover effects in the wider economy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vertical windows are the most common and simplest method to introduce daylight to interior spaces of office buildings, while also providing a view and connection to the outside. However, high contrast ratios between windows and surrounding surfaces can cause visual discomfort for occupants and can negatively influence their health and productivity. Consequently, building occupants may try to adapt their working environment through closing blinds and turning on lights in order to improve indoor visual comfort. Such interventions defeat the purpose of daylight harvesting systems and can increase the forecast electric lighting consumption in buildings that include such systems. A simple strategy to prevent these problematic consequences is to reduce the luminance contrasts presented by the window wall by increasing the luminance of areas surrounding the window through the sparing use of energy-efficient supplementary lighting, such light emitting diodes (LEDs). This paper presents the result of a pilot study in typical office in Brisbane, Australia that tests the effectiveness of a supplementary LED lighting system. The study shows an improvement in the appraisal of the visual environment is achieved using the supplementary system, along with up to 88% reductions in luminance contrast at the window wall. Also observed is a 36% reduction in the likelihood of user interventions that would increase energy usage. These results are used as the basis of an annual energy simulation of the test office and indicate that supplementary systems could be used to save energy beyond what is typically realised in side lit office spaces.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High contrast ratios between windows and surrounding surfaces could cause reduced visibility or discomfort for occupants. Consequently, building users may choose to intervene in lighting conditions through closing blinds and turning on the lamps in order to enhance indoor visual comfort. Such interventions increase projected electric lighting use in buildings. One simple method to prevent these problematic issues is increasing the luminance of the areas surrounding to the bright surface of windows through the use of energy-efficient supplementary lighting, such Light Emitting Diodes (LEDs). This paper reports on the results of a pilot study in conventional office in Brisbane, Australia. The outcomes of this study indicated that a supplementary LED system of approximately 18 W could reduce the luminance contrast on the window wall from values in the order of 117:1 to 33:1. In addition, the results of this experiment suggested that this supplementary strategy could increase the subjective scale appraisal of window appearance by approximately 33%, as well as reducing the likelihood of users’ intention to turn on the ceiling lights by about 27%. It could also diminish the likelihood of occupants’ intention to move the blind down by more than 90%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electrospun nanofiber meshes have emerged as a new generation of scaffold membranes possessing a number of features suitable for tissue regeneration. One of these features is the flexibility to modify their structure and composition to orchestrate specific cellular responses. In this study, we investigated the effects of nanofiber orientation and surface functionalization on human mesenchymal stem cell (hMSC) migration and osteogenic differentiation. We used an in vitro model to examine hMSC migration into a cell-free zone on nanofiber meshes and mitomycin C treatment to assess the contribution of proliferation to the observed migration. Poly (ɛ-caprolactone) meshes with oriented topography were created by electrospinning aligned nanofibers on a rotating mandrel, while randomly oriented controls were collected on a stationary collector. Both aligned and random meshes were coated with a triple-helical, type I collagen-mimetic peptide, containing the glycine-phenylalanine-hydroxyproline-glycine-glutamate-arginine (GFOGER) motif. Our results indicate that nanofiber GFOGER peptide functionalization and orientation modulate cellular behavior, individually, and in combination. GFOGER significantly enhanced the migration, proliferation, and osteogenic differentiation of hMSCs on nanofiber meshes. Aligned nanofiber meshes displayed increased cell migration along the direction of fiber orientation compared to random meshes; however, fiber alignment did not influence osteogenic differentiation. Compared to each other, GFOGER coating resulted in a higher proliferation-driven cell migration, whereas fiber orientation appeared to generate a larger direct migratory effect. This study demonstrates that peptide surface modification and topographical cues associated with fiber alignment can be used to direct cellular behavior on nanofiber mesh scaffolds, which may be exploited for tissue regeneration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quantitative ultrasound of the heel captures heel bone properties that independently predict fracture risk and, with bone mineral density (BMD) assessed by X-ray (DXA), may be convenient alternatives for evaluating osteoporosis and fracture risk. We performed a meta-analysis of genome-wide association (GWA) studies to assess the genetic determinants of heel broadband ultrasound attenuation (BUA; n 5 14 260), velocity of sound (VOS; n 5 15 514) and BMD (n 5 4566) in 13 discovery cohorts. Independent replication involved seven cohorts with GWA data (in silico n 5 11 452) and new genotyping in 15 cohorts (de novo n 5 24 902). In combined random effects, meta-analysis of the discovery and replication cohorts, nine single nucleotide polymorphisms (SNPs) had genome-wide significant (P < 5 3 108) associations with heel bone properties. Alongside SNPs within or near previously identified osteoporosis susceptibility genes including ESR1 (6q25.1: rs4869739, rs3020331, rs2982552), SPTBN1 (2p16.2: rs11898505), RSPO3 (6q22.33: rs7741021), WNT16 (7q31.31: rs2908007), DKK1 (10q21.1: rs7902708) and GPATCH1 (19q13.11: rs10416265), we identified a new locus on chromosome 11q14.2 (rs597319 close to TMEM135, a gene recently linked to osteoblastogenesis and longevity) significantly associated with both BUA and VOS (P < 8.23 3 1014). In meta-analyses involving 25 cohorts with up to 14 985 fracture cases, six of 10 SNPs associated with heel bone properties at P < 5 3 106 also had the expected direction of association with any fracture (P < 0.05), including threeSNPswithP < 0.005: 6q22.33 (rs7741021), 7q31.31 (rs2908007) and 10q21.1 (rs7902708). In conclusion, thisGWAstudy reveals the effect of several genescommon to central DXA-derivedBMDand heel ultrasound/DXAmeasures and points to anewgenetic locus with potential implications for better understanding of osteoporosis pathophysiology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A high contrast ratio between windows and surrounding walls may lead to office workers visual discomfort that could negatively affect their satisfaction and productivity. Consequently, occupants may try to adapt their working environment by closing blinds and/ or turning on the lights to enhance indoor visual comfort, which can reduce predicted energy savings. The hypothesis of this study is that reducing luminance contrast ratio on the window wall will improve window appearance which potentially will reduce visual discomfort and decrease workers interventions. Thus, this PhD research proposes a simple strategy to diminish the luminance contrast on the window wall by increasing the luminance of the areas surrounding the windows using supplementary light emitting diode (LED) systems. To test the hypothesis, this investigation will involve three experiments in different office layouts with various window types and orientations in Brisbane, Australia. It will assess user preferences for different luminance patterns in windowed offices featuring flexible, lowpower LED lighting installations that allows multiple lighting design options on the window wall. Detailed luminance and illuminance measures will be used to match quantitative lighting design assessment to user preferences.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bone mineral density (BMD) is the most widely used predictor of fracture risk. We performed the largest meta-analysis to date on lumbar spine and femoral neck BMD, including 17 genome-wide association studies and 32,961 individuals of European and east Asian ancestry. We tested the top BMD-associated markers for replication in 50,933 independent subjects and for association with risk of low-trauma fracture in 31,016 individuals with a history of fracture (cases) and 102,444 controls. We identified 56 loci (32 new) associated with BMD at genome-wide significance (P < 5 × 10−8). Several of these factors cluster within the RANK-RANKL-OPG, mesenchymal stem cell differentiation, endochondral ossification and Wnt signaling pathways. However, we also discovered loci that were localized to genes not known to have a role in bone biology. Fourteen BMD-associated loci were also associated with fracture risk (P < 5 × 10−4, Bonferroni corrected), of which six reached P < 5 × 10−8, including at 18p11.21 (FAM210A), 7q21.3 (SLC25A13), 11q13.2 (LRP5), 4q22.1 (MEPE), 2p16.2 (SPTBN1) and 10q21.1 (DKK1). These findings shed light on the genetic architecture and pathophysiological mechanisms underlying BMD variation and fracture susceptibility.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metabolic programming during the perinatal period as a consequence of early nutrition is an emerging area of great interest. This concept is known as the "fetal origins of adult disease" theory (1). Numerous epidemiological studies published over the past 20 years or so have suggested that small body size at birth and during infancy and, more specifically, intrauterine growth retardation are associated later in life with lowered cognitive performance and increased rates of coronary heart disease and its major biological risk factors, ie, raised blood pressure, insulin resistance, coronary artery disease, and abnormalities in lipid metabolism. The molecular mechanisms that govern this phenomenon in humans, however, are unknown and need to be elucidated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Model systems are critical to our understanding of self-assembly processes. As such, we have studied the surface self-assembly of a small and simple molecule, indole-2-carboxylic acid (I2CA). We combine density functional theory gas-phase (DFT) calculations with scanning tunneling microscopy to reveal details of I2CA assembly in two different solvents at the solution/solid interface, and on Au(111) in ultrahigh vacuum (UHV). In UHV and at the trichlorobenzene/highly oriented pyrolytic graphite (HOPG) interface, I2CA forms epitaxial lamellar structures based on cyclic OH⋯O carboxylic dimers. The structure formed at the heptanoic acid/HOPG interface is different and can be interpreted in a model where heptanoic acid molecules co-adsorb on the substrate with the I2CA, forming a bicomponent commensurate unit cell. DFT calculations of dimer energetics elucidate the basic building blocks of these structures, whereas calculations of periodic two-dimensional assemblies reveal the epitaxial effects introduced by the different substrates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe a surprising cooperative adsorption process observed by scanning tunneling microscopy (STM) at the liquid−solid interface. The process involves the association of a threefold hydrogen-bonding unit, trimesic acid (TMA), with straight-chain aliphatic alcohols of varying length (from C7 to C30), which coadsorb on highly oriented pyrolytic graphite (HOPG) to form linear patterns. In certain cases, the known TMA “flower pattern” can coexist temporarily with the linear TMA−alcohol patterns, but it eventually disappears. Time-lapsed STM imaging shows that the evolution of the flower pattern is a classical ripening phenomenon. The periodicity of the linear TMA−alcohol patterns can be modulated by choosing alcohols with appropriate chain lengths, and the precise structure of the patterns depends on the parity of the carbon count in the alkyl chain. Interactions that lead to this odd−even effect are analyzed in detail. The molecular components of the patterns are achiral, yet their association by hydrogen bonding leads to the formation of enantiomeric domains on the surface. The interrelation of these domains and the observation of superperiodic structures (moiré patterns) are rationalized by considering interactions with the underlying graphite surface and within the two-dimensional crystal of the adsorbed molecules. Comparison of the observed two-dimensional structures with the three-dimensional crystal structures of TMA−alcohol complexes determined by X-ray crystallography helps reveal the mechanism of molecular association in these two-component systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Scanning tunneling microscopy (STM) of monolayers comprising oligothiophene and fullerene molecular semiconductors reveals details of their molecular-scale phase separation and ordering with potential implications for the design of organic electronic devices, in particular future bulk heterojunction solar cells. Prochiral terthienobenzenetricarboxylic acid (TTBTA) self-assembles at the solution/graphite interface into either a porous chicken wire network linked by dimeric hydrogen bonding associations of COOH groups (R22(8)) or a close-packed network linked in a novel hexameric hydrogen bonding motif (R66(24)). Analysis of high-resolution STM images shows that the chicken wire phase is racemically mixed, whereas the close-packed phase is enantiomerically pure. The cavities of the chicken wire structure can efficiently host C60 molecules, which form ordered domains with either one, two, or three fullerenes per cavity. The observed monodisperse filling and long-range co-alignment of fullerenes is described in terms of a combination of an electrostatic effect and the commensurability between the graphite and molecular network, which leads to differentiation of otherwise identical adsorption sites in the pores.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The results of a high-resolution ambient STM study of ‘sulflower’ (octathio[8]circulene) and ‘selenosulflower’ (sym-tetraselena-tetrathio[8]circulene) molecules, immobilized in a hydrogen-bonded matrix of trimesic acid (TMA) at the solid–liquid interface, are compared with the STM and X-ray structure of separate host and guest 2D and 3D crystals, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The scanning tunneling microscope (STM) has evolved continually since its invention, as scientists have expanded its use to encompass atomic-scale manipulation, momentum-resolved electronic characterization, localized chemical reactions (bond breaking and bond making) in adsorbed molecules, and even chain reactions at surfaces. This burgeoning field has recently expanded to include the use of the STM to inject hot electrons into substrate surface states; the injected electrons can travel laterally and induce changes in chemical structure in molecules located up to 100 nm from the STM tip. We describe several key demonstrations of this phenomenon, including one appearing in this issue of ACS Nano by Chen et al. Possible applications for this technique are also discussed, including characterizing the dispersion of molecule−substrate interface states and the controlled patterning of molecular overlayers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Due to its remarkable mechanical and biological properties, there is considerable interest in understanding, and replicating, spider silk's stress-processing mechanisms and structure-function relationships. Here, we investigate the role of water in the nanoscale mechanics of the different regions in the spider silk fibre, and their relative contributions to stress processing. We propose that the inner core region, rich in spidroin II, retains water due to its inherent disorder, thereby providing a mechanism to dissipate energy as it breaks a sacrificial amide-water bond and gains order under strain, forming a stronger amide-amide bond. The spidroin I-rich outer core is more ordered under ambient conditions and is inherently stiffer and stronger, yet does not on its own provide high toughness. The markedly different interactions of the two proteins with water, and their distribution across the fibre, produce a stiffness differential and provide a balance between stiffness, strength and toughness under ambient conditions. Under wet conditions, this balance is destroyed as the stiff outer core material reverts to the behaviour of the inner core.