107 resultados para Fourier-transform infrared spectroscopy
Resumo:
Nanocrystalline silicon thin films were deposited on single-crystal silicon and glass substrates simultaneously by inductively coupled plasma-assisted chemical vapor deposition from the reactive silane reactant gas diluted with hydrogen at a substrate temperature of 200 °C. The effect of hydrogen dilution ratio X (X is defined as the flow rate ratio of hydrogen to silane gas), ranging from 1 to 20, on the structural and optical properties of the deposited films, is extensively investigated by Raman spectroscopy, X-ray diffraction, Fourier transform infrared absorption spectroscopy, UV/VIS spectroscopy, and scanning electron microscopy. Our experimental results reveal that, with the increase of the hydrogen dilution ratio X, the deposition rate Rd and hydrogen content CH are reduced while the crystalline fraction Fc, mean grain size δ and optical bandgap ETauc are increased. In comparison with other plasma enhanced chemical vapor deposition methods of nanocrystalline silicon films where a very high hydrogen dilution ratio X is routinely required (e.g. X > 16), we have achieved nanocrystalline silicon films at a very low hydrogen dilution ratio of 1, featuring a high deposition rate of 1.57 nm/s, a high crystalline fraction of 67.1%, a very low hydrogen content of 4.4 at.%, an optical bandgap of 1.89 eV, and an almost vertically aligned columnar structure with a mean grain size of approximately 19 nm. We have also shown that a sufficient amount of atomic hydrogen on the growth surface essential for the formation of nanocrystalline silicon is obtained through highly-effective dissociation of silane and hydrogen molecules in the high-density inductively coupled plasmas. © 2009 The Royal Society of Chemistry.
Resumo:
Silicon thin films with a variable content of nanocrystalline phase were deposited on single-crystal silicon and glass substrates by inductively coupled plasma-assisted chemical vapor deposition using a silane precursor without any hydrogen dilution in the low substrate temperature range from 100 to 300 °C. The structural and optical properties of the deposited films are systematically investigated by Raman spectroscopy, x-ray diffraction, Fourier transform infrared absorption spectroscopy, UV/vis spectroscopy, scanning electron microscopy and high-resolution transmission electron microscopy. It is shown that the structure of the silicon thin films evolves from the purely amorphous phase to the nanocrystalline phase when the substrate temperature is increased from 100 to 150 °C. It is found that the variations of the crystalline fraction fc, bonded hydrogen content CH, optical bandgap ETauc, film microstructure and growth rate Rd are closely related to the substrate temperature. In particular, at a substrate temperature of 300 °C, the nanocrystalline Si thin films of our interest feature a high growth rate of 1.63nms-1, a low hydrogen content of 4.0at.%, a high crystalline fraction of 69.1%, a low optical bandgap of 1.55eV and an almost vertically aligned columnar structure with a mean grain size of approximately 10nm. It is also shown that the low-temperature synthesis of nanocrystalline Si thin films without any hydrogen dilution is attributed to the outstanding dissociation ability of the high-density inductively coupled plasmas and effective plasma-surface interactions during the growth process. Our results offer a highly effective yet simple and environmentally friendly technique to synthesize high-quality nanocrystalline Si films, vitally needed for the development of new-generation solar cells and other emerging nanotechnologies.
Resumo:
It is commonly believed that in order to synthesize high-quality hydrogenated amorphous silicon carbide (a-Si1-xCx : H) films at competitive deposition rates it is necessary to operate plasma discharges at high power regimes and with heavy hydrogen dilution. Here we report on the fabrication of hydrogenated amorphous silicon carbide films with different carbon contents x (ranging from 0.09 to 0.71) at high deposition rates using inductively coupled plasma (ICP) chemical vapour deposition with no hydrogen dilution and at relatively low power densities (∼0.025 W cm -3) as compared with existing reports. The film growth rate R d peaks at x = 0.09 and x = 0.71, and equals 18 nm min-1 and 17 nm min-1, respectively, which is higher than other existing reports on the fabrication of a-Si1-xCx : H films. The extra carbon atoms for carbon-rich a-Si1-xCx : H samples are incorporated via diamond-like sp3 C-C bonding as deduced by Fourier transform infrared absorption and Raman spectroscopy analyses. The specimens feature a large optical band gap, with the maximum of 3.74 eV obtained at x = 0.71. All the a-Si1-xCx : H samples exhibit low-temperature (77 K) photoluminescence (PL), whereas only the carbon-rich a-Si1-xCx : H samples (x ≥ 0.55) exhibit room-temperature (300 K) PL. Such behaviour is explained by the static disorder model. High film quality in our work can be attributed to the high efficiency of the custom-designed ICP reactor to create reactive radical species required for the film growth. This technique can be used for a broader range of material systems where precise compositional control is required. © 2008 IOP Publishing Ltd.
Resumo:
Nanocrystalline silicon carbide (nc-SiC) films are prepared by low-frequency inductively coupled plasma chemical vapor deposition from feedstock gases silane and methane diluted with hydrogen at a substrate temperature of 500 °C. The effect of different hydrogen dilution ratios X [hydrogen flow (sccm) / silane + methane flow (sccm)] on the growth of nc-SiC films is investigated by X-ray diffraction, scanning electron microscopy, Fourier transform infrared (FTIR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). At a low hydrogen dilution ratio X, cubic silicon carbide is the main crystal phase; whereas at a high hydrogen dilution ratio X, hexagonal silicon carbide is the main crystal phase. The SiC crystal phase transformation may be explained by the different surface mobility of reactive Si-based and C-based radicals deposited at different hydrogen dilution ratios X. The FTIR and XPS analyses show that the Si-C bonds are the main bonds in the films and elemental composition of SiC is nearly stoichiometric with almost equal share of silicon and carbon atoms.
Resumo:
Supported by contemporary theories of architectural aesthetics and neuro-aesthetics this paper presents a case for the use of portable fNIRS imaging in the assessment of emotional responses to spatial environments experienced by both blind and sighted. The aim of the paper is to outline the implications of fNIRS for spatial research and practice within the field of architecture, thereby suggesting a potential taxonomy of particular formations of space and affect. Empirical neurological study of affect and spatial experience from an architectural design perspective remains in many instances unchartered. Clinical research using the portable non-invasive neuro-imaging device, functional near infrared spectroscopy (fNIRS) is proving convincing in its ability to detect emotional responses to visual, spatio-auditory and task based stimuli, providing a firm basis to potentially track cortical activity in the appraisal of architectural environments. Additionally, recent neurological studies have sought to explore the manifold sensory abilities of the visually impaired to better understand spatial perception in general. Key studies reveal that early blind participants perform as well as sighted due to higher auditory and somato-sensory spatial acuity. For instance, face vision enables the visually impaired to detect environments through skin pressure, enabling at times an instantaneous impression of the layout of an unfamiliar environment. Studies also report pleasant and unpleasant emotional responses such as ‘weightedness’ or ‘claustrophobia’ within certain interior environments, revealing a deeper perceptual sensitivity then would be expected. We conclude with justification that comparative fNIRS studies between the sighted and blind concerning spatial experience have the potential to provide greater understanding of emotional responses to architectural environments.
Resumo:
Collaboration between neuroscience and architecture is emerging as a key field of research as demonstrated in recent times by development of the Academy of Neuroscience for Architecture (ANFA) and other societies. Neurological enquiry of affect and spatial experience from a design perspective remains in many instances unchartered. Research using portable near infrared spectroscopy (fNIRs) - an emerging non-invasive neuro-imaging device, is proving convincing in its ability to detect emotional responses to visual, spatio-auditory and task based stimuli. This innovation provides a firm basis to potentially track cortical activity in the appraisal of architectural environments. Additionally, recent neurological studies have sought to explore the manifold sensory abilities of the visually impaired to better understand spatial perception in general. Key studies reveal that early blind participants perform as well as sighted due to higher auditory and somato-sensory spatial acuity. Studies also report pleasant and unpleasant emotional responses within certain interior environments revealing a deeper perceptual sensitivity than would be expected. Comparative fNIRS studies between the sighted and blind concerning spatial experience has the potential to provide greater understanding of emotional responses to architectural environments. Supported by contemporary theories of architectural aesthetics, this paper presents a case for the use of portable fNIRS imaging in the assessment of emotional responses to spatial environments experienced by both blind and sighted. The aim of the paper is to outline the implications of fNIRS upon spatial research and practice within the field of architecture and points to a potential taxonomy of particular formations of space and affect.
Resumo:
PURPOSE The purpose of this study was to demonstrate the potential of near infrared (NIR) spectroscopy for characterizing the health and degenerative state of articular cartilage based on the components of the Mankin score. METHODS Three models of osteoarthritic degeneration induced in laboratory rats by anterior cruciate ligament (ACL) transection, meniscectomy (MSX), and intra-articular injection of monoiodoacetate (1 mg) (MIA) were used in this study. Degeneration was induced in the right knee joint; each model group consisted of 12 rats (N = 36). After 8 weeks, the animals were euthanized and knee joints were collected. A custom-made diffuse reflectance NIR probe of 5-mm diameter was placed on the tibial and femoral surfaces, and spectral data were acquired from each specimen in the wave number range of 4,000 to 12,500 cm(-1). After spectral data acquisition, the specimens were fixed and safranin O staining (SOS) was performed to assess disease severity based on the Mankin scoring system. Using multivariate statistical analysis, with spectral preprocessing and wavelength selection technique, the spectral data were then correlated to the structural integrity (SI), cellularity (CEL), and matrix staining (SOS) components of the Mankin score for all the samples tested. RESULTS ACL models showed mild cartilage degeneration, MSX models had moderate degeneration, and MIA models showed severe cartilage degenerative changes both morphologically and histologically. Our results reveal significant linear correlations between the NIR absorption spectra and SI (R(2) = 94.78%), CEL (R(2) = 88.03%), and SOS (R(2) = 96.39%) parameters of all samples in the models. In addition, clustering of the samples according to their level of degeneration, with respect to the Mankin components, was also observed. CONCLUSIONS NIR spectroscopic probing of articular cartilage can potentially provide critical information about the health of articular cartilage matrix in early and advanced stages of osteoarthritis (OA). CLINICAL RELEVANCE This rapid nondestructive method can facilitate clinical appraisal of articular cartilage integrity during arthroscopic surgery.
Resumo:
Particulates with specific sizes and characteristics can induce potent immune responses by promoting antigen uptake of appropriate immuno-stimulatory cell types. Magnetite (Fe3O4) nanoparticles have shown many potential bioapplications due to their biocompatibility and special characteristics. Here, superparamagnetic Fe3O4 nanoparticles (SPIONs) with high magnetization value (70emug-1) were stabilized with trisodium citrate and successfully conjugated with a model antigen (ovalbumin, OVA) via N,N'-carbonyldiimidazole (CDI) mediated reaction, to achieve a maximum conjugation capacity at approximately 13μgμm-2. It was shown that different mechanisms governed the interactions between the OVA molecules and magnetite nanoparticles at different pH conditions. We evaluated as-synthesized SPION against commercially available magnetite nanoparticles. The cytotoxicity of these nanoparticles was investigated using mammalian cells. The reported CDI-mediated reaction can be considered as a potential approach in conjugating biomolecules onto magnetite or other biodegradable nanoparticles for vaccine delivery.
Resumo:
The surfaces of natural beidellite were modified with cationic surfactant octadecyl trimethylammonium bromide at different concentrations. The organo-beidellite adsorbent materials were then used for the removal of atrazine with the goal of investigating the mechanism for the adsorption of organic triazine herbicide from contaminated water. Changes on the surfaces and structure of beidellite were characterised by X-ray diffraction (XRD), thermogravimetric analysis (TGA), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and BET surface analysis. Kinetics of the adsorption studies were also carried out which show that the adsorption capacity of the organoclays increases with increasing surfactant concentration up until 1.0 CEC surfactant loading, after which the adsorption capacity greatly decreases. TG analysis reveals that although the 2.0 CEC sample has the greatest percentage of surfactant by mass, most of it is present on external sites. The 0.5 CEC sample has the highest proportion of surfactant exchanged into the internal active sites and the 1.0 CEC sample accounts for the highest adsorption capacity. The goodness of fit of the pseudo-second order kinetic confirms that chemical adsorption, rather than physical adsorption, controls the adsorption rate of atrazine.
Resumo:
Marble from the Chillagoe deposits was extensively used in the construction of Australia’s parliament house. Near infrared (NIR) spectroscopy has been applied to study the quality of marble from the Chillagoe marble deposits and to distinguish between different types of marble in the Chillagoe deposits. A comparison of the NIR spectra of marble with dolomite and monohydrocalcite is made. The spectrum of the marble closely resembles that of monohydrocalcite and is different from that of dolomite. The infrared spectra of the minerals are characterised by OH and water stretching vibrations. Both the first and second fundamental overtones of these bands are observed in the NIR spectra. Marble is characterised by NIR bands at 4005, 4268 and 4340 cm–1, attributed to carbonate combination bands and overtones. Marble also shows NIR bands at 5005, 5106, 5234 and 5334 cm–1 assigned to water combination bands. Finally the NIR spectrum of the marble displays broad low-intensity features centred upon 6905 cm–1 attributed to the water first overtones. It appears feasible to identify marble through the use of NIR spectroscopy.
Resumo:
The approach to remove greenhouse gases by pumping liquid CO2 several kilometres below the ground implies that many carbonate containing minerals will be formed. Among these minerals, the formation of hydromagnesite, dypingite and nesquehonite are possible, thus necessitating a study of such minerals. These minerals with a hydrotalcite-related formulae have been characterised by a combination of infrared and near infrared spectroscopy. Layered double hydroxides (also known as anionic clays or hydrotalcites) are a group of layered clay minerals described by the general formula: [M1–x2+Mx3+(OH)2]x+[An–]x/n∙mH2O. The infrared spectra of the minerals are characterised by OH and water stretching vibrations. Both the first and second fundamental overtones of these bands are observed in the NIR spectra in the 7030–7235 cm–1 and 10,490–10,570 cm–1 spectral ranges. Intense (CO3)2– symmetrical and anti-symmetrical stretching vibrations confirm the distortion of the carbonate anion. The position of the water bending vibration indicates water is strongly hydrogen-bonded to the carbonate anion in the mineral structure. NIR spectroscopy offers a method for quickly analysing such materials.
Resumo:
The influence of graphene oxide (GO) and its surface oxidized debris (OD) on the cure chemistry of an amine cured epoxy resin has been investigated by Fourier Transform Infrared Emission Spectroscopy (FT-IES) and Differential Scanning Calorimetry (DSC). Spectral analysis of IR radiation emitted at the cure temperature from thin films of diglycidyl ether of bisphenol A epoxy resin (DGEBA) and 4,4'-diaminodiphenylmethane (DDM) curing agent with and without GO allowed the cure kinetics of the interphase between the bulk resin and GO to be monitored in real time, by measuring both the consumption of primary (1°) amine and epoxy groups, formation of ether groups as well as computing the profiles for formation of secondary (2°) and tertiary (3°) amines. OD was isolated from as-produced GO (aGO) by a simple autoclave method to give OD-free autoclaved GO (acGO). It has been found that the presence of OD on the GO prevents active sites on GO surfaces fully catalysing and participating in the reaction of DGEBA with DDM, which results in slower reaction and a lower crosslink density of the three-dimensional networks in the aGO-resin interphase compared to the acGO-resin interphase. We also determined that OD itself promoted DGEBA homopolymerization. A DSC study further confirmed that the aGO nanocomposite exhibited lower Tg while acGO nanocomposite showed higher Tg compared to neat resin because of the difference in crosslink densities of the matrix around the different GOs.