126 resultados para Equação de Maxwell 2D


Relevância:

10.00% 10.00%

Publicador:

Resumo:

As part of an ongoing research on the development of a longer life insulated rail joint (IRJ), this paper reports a field experiment and a simplified 2D numerical modelling for the purpose of investigating the behaviour of rail web in the vicinity of endpost in an insulated rail joint (IRJ) due to wheel passages. A simplified 2D plane stress finite element model is used to simulate the wheel-rail rolling contact impact at IRJ. This model is validated using data from a strain gauged IRJ that was installed in a heavy haul network; data in terms of the vertical and shear strains at specific positions of the IRJ during train passing were captured and compared with the results of the FE model. The comparison indicates a satisfactory agreement between the FE model and the field testing. Furthermore, it demonstrates that the experimental and numerical analyses reported in this paper provide a valuable datum for developing further insight into the behaviour of IRJ under wheel impacts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Porphyrins are one of Nature’s essential building blocks that play an important role in several biological systems including oxygen transport, photosynthesis, and enzymes. Their capacity to absorb visible light, facilitate oxidation and reduction, and act as energy- and electron-transfer agents, in particular when several are held closely together, is of interest to chemists who seek to mimic Nature and to make and use these compounds in order to synthesise novel advanced materials. During this project 26 new 5,10-diarylsubstituted porphyrin monomers, 10 dimers, and 1 tetramer were synthesised. The spectroscopic and structural properties of these compounds were investigated using 1D/2D 1H NMR, UV/visible, ATR-IR and Raman spectroscopy, mass spectrometry, X-ray crystallography, electrochemistry and gel permeation chromatography. Nitration, amination, bromination and alkynylation of only one as well as both of the meso positions of the porphyrin monomers have resulted in the expansion of the synthetic possibilities for the 5,10-diarylsubstituted porphyrins. The development of these new porphyrin monomers has led to the successful synthesis of new azo- and butadiyne-linked dimers. The functionalisation of these compounds was investigated, in particular nitration, amination, and bromination. The synthesised dimers containing the azo bridge have absorption spectra that show a large split in the Soret bands and intense Q-bands that have been significantly redshifted. The butadiyne dimers also have intense, red-shifted Q-bands but smaller Soret band splittings. Crystal structures of two new azoporphyrins have been acquired and compared to the azoporphyrin previously synthesised from 5,10,15- triarylsubstituted porphyrin monomers. A completely new cyclic porphyrin oligomer (CPO) was synthesised comprising four porphyrin monomers linked by azo and butadiyne bridges. This is the first cyclic tetramer that has both the azo and butadiyne linking groups. The absorption spectrum of the tetramer exhibits a large Soret split making it more similar to the azo- dimers than the butadiyne-linked dimers. The spectroscopic characteristics of the synthesised tetramer have been compared to the characteristics of other cyclic porphyrin tetramers. The collected data indicate that the new synthesised cyclic tetramer has a more efficient ð-overlap and a better ground state electronic communication between the porphyrin rings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The numerical modelling of electromagnetic waves has been the focus of many research areas in the past. Some specific applications of electromagnetic wave scattering are in the fields of Microwave Heating and Radar Communication Systems. The equations that govern the fundamental behaviour of electromagnetic wave propagation in waveguides and cavities are the Maxwell's equations. In the literature, a number of methods have been employed to solve these equations. Of these methods, the classical Finite-Difference Time-Domain scheme, which uses a staggered time and space discretisation, is the most well known and widely used. However, it is complicated to implement this method on an irregular computational domain using an unstructured mesh. In this work, a coupled method is introduced for the solution of Maxwell's equations. It is proposed that the free-space component of the solution is computed in the time domain, whilst the load is resolved using the frequency dependent electric field Helmholtz equation. This methodology results in a timefrequency domain hybrid scheme. For the Helmholtz equation, boundary conditions are generated from the time dependent free-space solutions. The boundary information is mapped into the frequency domain using the Discrete Fourier Transform. The solution for the electric field components is obtained by solving a sparse-complex system of linear equations. The hybrid method has been tested for both waveguide and cavity configurations. Numerical tests performed on waveguides and cavities for inhomogeneous lossy materials highlight the accuracy and computational efficiency of the newly proposed hybrid computational electromagnetic strategy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Continuum mechanics provides a mathematical framework for modelling the physical stresses experienced by a material. Recent studies show that physical stresses play an important role in a wide variety of biological processes, including dermal wound healing, soft tissue growth and morphogenesis. Thus, continuum mechanics is a useful mathematical tool for modelling a range of biological phenomena. Unfortunately, classical continuum mechanics is of limited use in biomechanical problems. As cells refashion the �bres that make up a soft tissue, they sometimes alter the tissue's fundamental mechanical structure. Advanced mathematical techniques are needed in order to accurately describe this sort of biological `plasticity'. A number of such techniques have been proposed by previous researchers. However, models that incorporate biological plasticity tend to be very complicated. Furthermore, these models are often di�cult to apply and/or interpret, making them of limited practical use. One alternative approach is to ignore biological plasticity and use classical continuum mechanics. For example, most mechanochemical models of dermal wound healing assume that the skin behaves as a linear viscoelastic solid. Our analysis indicates that this assumption leads to physically unrealistic results. In this thesis we present a novel and practical approach to modelling biological plasticity. Our principal aim is to combine the simplicity of classical linear models with the sophistication of plasticity theory. To achieve this, we perform a careful mathematical analysis of the concept of a `zero stress state'. This leads us to a formal de�nition of strain that is appropriate for materials that undergo internal remodelling. Next, we consider the evolution of the zero stress state over time. We develop a novel theory of `morphoelasticity' that can be used to describe how the zero stress state changes in response to growth and remodelling. Importantly, our work yields an intuitive and internally consistent way of modelling anisotropic growth. Furthermore, we are able to use our theory of morphoelasticity to develop evolution equations for elastic strain. We also present some applications of our theory. For example, we show that morphoelasticity can be used to obtain a constitutive law for a Maxwell viscoelastic uid that is valid at large deformation gradients. Similarly, we analyse a morphoelastic model of the stress-dependent growth of a tumour spheroid. This work leads to the prediction that a tumour spheroid will always be in a state of radial compression and circumferential tension. Finally, we conclude by presenting a novel mechanochemical model of dermal wound healing that takes into account the plasticity of the healing skin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cell-cell and cell-matrix interactions play a major role in tumor morphogenesis and cancer metastasis. Therefore, it is crucial to create a model with a biomimetic microenvironment that allows such interactions to fully represent the pathophysiology of a disease for an in vitro study. This is achievable by using three-dimensional (3D) models instead of conventional two-dimensional (2D) cultures with the aid of tissue engineering technology. We are now able to better address the complex intercellular interactions underlying prostate cancer (CaP) bone metastasis through such models. In this study, we assessed the interaction of CaP cells and human osteoblasts (hOBs) within a tissue engineered bone (TEB) construct. Consistent with other in vivo studies, our findings show that intercellular and CaP cell-bone matrix interactions lead to elevated levels of matrix metalloproteinases, steroidogenic enzymes and the CaP biomarker, prostate specific antigen (PSA); all associated with CaP metastasis. Hence, it highlights the physiological relevance of this model. We believe that this model will provide new insights for understanding of the previously poorly understood molecular mechanisms of bone metastasis, which will foster further translational studies, and ultimately offer a potential tool for drug screening. © 2010 Landes Bioscience.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Earlier studies have shown that the influence of fixation stability on bone healing diminishes with advanced age. The goal of this study was to unravel the relationship between mechanical stimulus and age on callus competence at a tissue level. Using 3D in vitro micro-computed tomography derived metrics, 2D in vivo radiography, and histology, we investigated the influences of age and varying fixation stability on callus size, geometry, microstructure, composition, remodeling, and vascularity. Compared were four groups with a 1.5-mm osteotomy gap in the femora of Sprague–Dawley rats: Young rigid (YR), Young semirigid (YSR), Old rigid (OR), Old semirigid (OSR). Hypothesis was that calcified callus microstructure and composition is impaired due to the influence of advanced age, and these individuals would show a reduced response to fixation stabilities. Semirigid fixations resulted in a larger ΔCSA (Callus cross-sectional area) compared to rigid groups. In vitro μCT analysis at 6 weeks postmortem showed callus bridging scores in younger animals to be superior than their older counterparts (pb0.01). Younger animals showed (i) larger callus strut thickness (pb0.001), (ii) lower perforation in struts (pb0.01), and (iii) higher mineralization of callus struts (pb0.001). Callus mineralization was reduced in young animals with semirigid fracture fixation but remained unaffected in the aged group. While stability had an influence, age showed none on callus size and geometry of callus. With no differences observed in relative osteoid areas in the callus ROI, old as well as semirigid fixated animals showed a higher osteoclast count (pb0.05). Blood vessel density was reduced in animals with semirigid fixation (pb0.05). In conclusion, in vivo monitoring indicated delayed callus maturation in aged individuals. Callus bridging and callus competence (microstructure and mineralization) were impaired in individuals with an advanced age. This matched with increased bone resorption due to higher osteoclast numbers. Varying fixator configurations in older individuals did not alter the dominant effect of advanced age on callus tissue mineralization, unlike in their younger counterparts. Age-associated influences appeared independent from stability. This study illustrates the dominating role of osteoclastic activity in age-related impaired healing, while demonstrating the optimization of fixation parameters such as stiffness appeared to be less effective in influencing healing in aged individuals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Field studies show that the internal screens in a gross pollutant trap (GPT) are often clogged with organic matter, due to infrequent cleaning. The hydrodynamic performance of a GPT with fully blocked screens was comprehensively investigated under a typical range of onsite operating conditions. Using an acoustic Doppler velocimeter (ADV), velocity profiles across three critical sections of the GPT were measured and integrated to examine the net fluid flow at each section. The data revealed that when the screens are fully blocked, the flow structure within the GPT radically changes. Consequently, the capture/retention performance of the device rapidly deteriorates. Good agreement was achieved between the experimental and the previous 2D computational fluid dynamics (CFD) velocity profiles for the lower GPT inlet flow conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The behaviour of cells cultured within three-dimensional (3D) structures rather than onto two-dimensional (2D) culture plastic more closely reflects their in vivo responses. Consequently, 3D culture systems are becoming crucial scientific tools in cancer cell research. We used a novel 3D culture concept to assess cell-matrix interactions implicated in carcinogenesis: a synthetic hydrogel matrix equipped with key biomimetic features, namely incorporated cell integrin-binding motifs (e.g. RGD peptides) and the ability of being degraded by cell-secreted proteases (e.g. matrix metalloproteases). As a cell model, we chose epithelial ovarian cancer, an aggressive disease typically diagnosed at an advanced stage when chemoresistance occurs. Both cell lines used (OV-MZ-6, SKOV-3) proliferated similarly in 2D, but not in 3D. Spheroid formation was observed exclusively in 3D when cells were embedded within hydrogels. By exploiting the design flexibility of the hydrogel characteristics, we showed that proliferation in 3D was dependent on cell-integrin engagement and the ability of cells to proteolytically remodel their extracellular microenvironment. Higher survival rates after exposure to the anti-cancer drug paclitaxel were observed in cell spheroids grown in hydrogels (40-60%) compared to cell monolayers in 2D (20%). Thus, 2D evaluation of chemosensitivity may not reflect pathophysiological events seen in patients. Because of the design flexibility of their characteristics and their stability in long-term cultures (28 days), these biomimetic hydrogels represent alternative culture systems for the increasing demand in cancer research for more versatile, physiologically relevant and reproducible 3D matrices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective Research is beginning to provide an indication of the co-occurring substance abuse and mental health needs for the driving under the influence (DUI) population. This study aimed to examine the extent of such psychiatric problems among a large sample size of DUI offenders entering treatment in Texas. Methods This is a study of 36,373 past year DUI clients and 308,714 non-past year DUI clients admitted to Texas treatment programs between 2005 and 2008. Data were obtained from the State's administrative dataset. Results Analysis indicated that non-past year DUI clients were more likely to present with more severe illicit substance use problems, while past year DUI clients were more likely to have a primary problem with alcohol. Nevertheless, a cannabis use problem was also found to be significantly associated with DUI recidivism in the last year. In regards to mental health status, a major finding was that depression was the most common psychiatric condition reported by DUI clients, including those with more than one DUI offence in the past year. This cohort also reported elevated levels of Bipolar Disorder compared to the general population, and such a diagnosis was also associated with an increased likelihood of not completing treatment. Additionally, female clients were more likely to be diagnosed with mental health problems than males, as well as more likely to be placed on medications at admission and more likely to have problems with methamphetamine, cocaine, and opiates. Conclusions DUI offenders are at an increased risk of experiencing comorbid psychiatric disorders, and thus, corresponding treatment programs need to cater for a range of mental health concerns that are likely to affect recidivism rates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of medical grade polycaprolactone–tricalcium phosphate (mPCL–TCP) (80:20) scaffolds on primary human alveolar osteoblasts (AOs) were compared with standard tissue-culture plates. Of the seeded AOs, 70% adhered to and proliferated on the scaffold surface and within open and interconnected pores; they formed multi-layered sheets and collagen fibers with uniform distribution within 28 days. Elevation of alkaline phosphatase activity occurred in scaffold–cell constructs independent of osteogenic induction. AO proliferation rate increased and significant decrease in calcium concentration of the medium for both scaffolds and plates under induction conditions were seen. mPCL–TCP scaffolds significantly influenced the AO expression pattern of osterix and osteocalcin (OCN). Osteogenic induction down-regulated OCN at both RNA and protein level on scaffolds (3D) by day 7, and up-regulated OCN in cell-culture plates (2D) by day 14, but OCN levels on scaffolds were higher than on cell-culture plates. Immunocytochemical signals for type I collagen, osteopontin and osteocalcin were detected at the outer parts of scaffold–cell constructs. More mineral nodules were found in induced than in non-induced constructs. Only induced 2D cultures showed nodule formation. mPCL–TCP scaffolds appear to stimulate osteogenesis in vitro by activating a cellular response in AO's to form mineralized tissue. There is a fundamental difference between culturing AOs on 2D and 3D environments that should be considered when studying osteogenesis in vitro.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paper examines the fallout of the Lehman Brothers collapse in Hong Kong. As an international financial hub in Asia, Hong Kong was profoundly affected by the collapse of this company. As a result, it impacted negatively on the public’s confidence in the Hong Kong’s banking sector. Furthermore, this event has exposed a number of regulatory deficiencies in Hong Kong. In response to this financial crisis, the Hong Kong government had made an unprecedented move to negotiate with local banks to refund the investors. In addition, the government has also sought public consultation on proposal to enhance the regulation of the sale of financial products. This paper argues that there needs to be amendments to the prevailing laws and the inclusions of legal rules to back up those proposed measures so that the disclosed information from the financial institution will not mislead the investors or misrepresent the products offered.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, we investigate and compare the Maxwell–Stefan and Nernst–Planck equations for modeling multicomponent charge transport in liquid electrolytes. Specifically, we consider charge transport in the Li+/I−/I3−/ACN ternary electrolyte originally found in dye-sensitized solar cells. We employ molecular dynamics simulations to obtain the Maxwell–Stefan diffusivities for this electrolyte. These simulated diffusion coefficients are used in a multicomponent charge transport model based on the Maxwell– Stefan equations, and this is compared to a Nernst–Planck based model which employs binary diffusion coefficients sourced from the literature. We show that significant differences between the electrolyte concentrations at electrode interfaces, as predicted by the Maxwell–Stefan and Nernst–Planck models, can occur. We find that these differences are driven by a pressure term that appears in the Maxwell–Stefan equations. We also investigate what effects the Maxwell–Stefan diffusivities have on the simulated charge transport. By incorporating binary diffusivities found in the literature into the Maxwell–Stefan framework, we show that the simulated transient concentration profiles depend on the diffusivities; however, the simulated equilibrium profiles remain unaffected.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To date, biodegradable networks and particularly their kinetic chain lengths have been characterized by analysis of their degradation products in solution. We characterize the network itself by NMR analysis in the solvent-swollen state under magic angle spinning conditions. The networks were prepared by photoinitiated cross-linking of poly(dl-lactide)−dimethacrylate macromers (5 kg/mol) in the presence of an unreactive diluent. Using diffusion filtering and 2D correlation spectroscopy techniques, all network components are identified. By quantification of network-bound photoinitiator fragments, an average kinetic chain length of 9 ± 2 methacrylate units is determined. The PDLLA macromer solution was also used with a dye to prepare computer-designed structures by stereolithography. For these networks structures, the average kinetic chain length is 24 ± 4 methacrylate units. In all cases the calculated molecular weights of the polymethacrylate chains after degradation are maximally 8.8 kg/mol, which is far below the threshold for renal clearance. Upon incubation in phosphate buffered saline at 37 °C, the networks show a similar mass loss profile in time as linear high-molecular-weight PDLLA (HMW PDLLA). The mechanical properties are preserved longer for the PDLLA networks than for HMW PDLLA. The initial tensile strength of 47 ± 2 MPa does not decrease significantly for the first 15 weeks, while HMW PDLLA lost 85 ± 5% of its strength within 5 weeks. The physical properties, kinetic chain length, and degradation profile of these photo-cross-linked PDLLA networks make them most suited materials for orthopedic applications and use in (bone) tissue engineering.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently, research has focused on bone marrow derived multipotent mesenchymal precursor cells (MPC) for their potential clinical use in bone engineering. Prior to clinical application, MPC-based treatment concepts need to be evaluated in preclinical, immunocompetent, large animal models. Sheep in particular are considered a valid model for orthopaedic and trauma related research. However, ovine MPC and their osteogenic potential remain poorly characterized. In the present study, ex vivo expanded MPC isolated from ovine bone marrow proliferated at a higher rate than osteoblasts (OB) derived from tibial compact bone as assessed using standard 2D culture. MPC expressed the respective phenotypic profile typical for different mesenchymal cell populations (CD14-/CD31-/CD45- /CD29+/CD44+/CD166+) and showed a multilineage differentiation potential. When compared to OB, MPC had a higher mineralization potential under standard osteogenic culture conditions and expressed typical markers such as osteocalcin, osteonectin and type I collagen at the mRNA and protein level. After 4 weeks in 3D culture, MPC constructs demonstrated higher cell density and mineralization, whilst cell viability on the scaffolds was assessed >90%. Cells displayed a spindle-like morphology and formed an interconnected network. Implanted subcutaneously into NOD/SCID mice on type I collagen coated polycaprolactone-tricalciumphosphate (mPCL-TCP) scaffolds, MPC presented a higher developmental potential than osteoblasts. In summary, this study provides a detailed in vitro characterisation of ovine MPC from a bone engineering perspective and suggests that MPC provide promising means for future bone disease related treatment applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article gives an overview of copyright law in the United Arab Emirates (UAE) and critically evaluates its operation in the digital era, providing suggestions for reform.