423 resultados para Electrophoresis, Gel, Pulsed-Field
Resumo:
Knowledge of the accuracy of dose calculations in intensity-modulated radiotherapy of the head and neck is essential for clinical confidence in these highly conformal treatments. High dose gradients are frequently placed very close to critical structures, such as the spinal cord, and good coverage of complex shaped nodal target volumes is important for long term-local control. A phantom study is presented comparing the performance of standard clinical pencil-beam and collapsed-cone dose algorithms to Monte Carlo calculation and three-dimensional gel dosimetry measurement. All calculations and measurements are normalized to the median dose in the primary planning target volume, making this a purely relative study. The phantom simulates tissue, air and bone for a typical neck section and is treated using an inverse-planned 5-field IMRT treatment, similar in character to clinically used class solutions. Results indicate that the pencil-beam algorithm fails to correctly model the relative dose distribution surrounding the air cavity, leading to an overestimate of the target coverage. The collapsed-cone and Monte Carlo results are very similar, indicating that the clinical collapsed-cone algorithm is perfectly sufficient for routine clinical use. The gel measurement shows generally good agreement with the collapsed-cone and Monte Carlo calculated dose, particularly in the spinal cord dose and nodal target coverage, thus giving greater confidence in the use of this class solution.
Resumo:
Improving efficiency and flexibility in pulsed power supply technologies are the most substantial concerns of pulsed power systems specifically for plasma generation. Recently, the improvement of pulsed power supply becomes of greater concern due to extension of pulsed power applications to environmental and industrial areas. A current source based topology is proposed in this paper which gives the possibility of power flow control. The main contribution in this configuration is utilization of low-medium voltage semiconductor switches for high voltage generation. A number of switch-diode-capacitor units are designated at the output of topology to exchange the current source energy into voltage form and generate a pulsed power with sufficient voltage magnitude and stress. Simulations have been carried out in Matlab/SIMULINK platform to verify the capability of this topology in performing desired duties. Being efficient and flexible are the main advantages of this topology.
Resumo:
This paper presents a high voltage pulsed power system based on low voltage switch-capacitor units connected to a current source for several applications such as plasma systems. A modified positive buck-boost converter topology is used to utilize the current source concept and a series of low voltage switch-capacitor units is connected to the current source in order to provide high voltage with high voltage stress (dv/dt) as demanded by loads. This pulsed power converter is flexible in terms of energy control, in that the stored energy in the current source can be adjusted by changing the current magnitude to significantly improve the efficiency of various systems with different requirements. Output voltage magnitude and stress (dv/dt) can be controlled by a proper selection of components and control algorithm to turn on and off switching devices.
Resumo:
Improving efficiency and flexibility in pulsed power supply technologies is the most substantial concern of pulsed power systems specifically with regard to plasma generation. Recently, the improvement of pulsed power supply has become of greater concern due to the extension of pulsed power applications to environmental and industrial areas. With this respect, a current source based topology is proposed in this paper as a pulsed power supply which gives the possibility of power flow control during load supplying mode. The main contribution in this configuration is utilization of low-medium voltage semiconductor switches for high voltage generation. A number of switch-diode-capacitor units are designated at the output of topology to exchange the current source energy into voltage form and generate a pulsed power with sufficient voltage magnitude and stress. Simulations carried out in Matlab/SIMULINK platform as well as experimental tests on a prototype setup have verified the capability of this topology in performing desired duties. Being efficient and flexible are the main advantages of this topology.
Resumo:
This study investigated a novel drug delivery system (DDS), consisting of polycaprolactone (PCL) or polycaprolactone 20% tricalcium phosphate (PCL-TCP) biodegradable scaffolds, fibrin Tisseel sealant and recombinant bone morphogenetic protein-2 (rhBMP-2) for bone regeneration. PCL and PCL-TCP-fibrin composites displayed a loading efficiency of 70% and 43%, respectively. Fluorescence and scanning electron microscopy revealed sparse clumps of rhBMP-2 particles, non-uniformly distributed on the rods’ surface of PCL-fibrin composites. In contrast, individual rhBMP-2 particles were evident and uniformly distributed on the rods’ surface of the PCL-TCP-fibrin composites. PCL-fibrin composites loaded with 10 and 20 μg/ml rhBMP-2 demonstrated a triphasic release profile as quantified by an enzyme-linked immunosorbent assay (ELISA). This consisted of burst releases at 2 h, and days 7 and 16. A biphasic release profile was observed for PCL-TCP-fibrin composites loaded with 10 μg/ml rhBMP-2, consisting of burst releases at 2 h and day 14. PCL-TCP-fibrin composites loaded with 20 μg/ml rhBMP-2 showed a tri-phasic release profile, consisting of burst releases at 2 h, and days 10 and 21. We conclude that the addition of TCP caused a delay in rhBMP-2 release. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and alkaline phosphatase assay verified the stability and bioactivity of eluted rhBMP-2 at all time points
Resumo:
Maintenance activities in a large-scale engineering system are usually scheduled according to the lifetimes of various components in order to ensure the overall reliability of the system. Lifetimes of components can be deduced by the corresponding probability distributions with parameters estimated from past failure data. While failure data of the components is not always readily available, the engineers have to be content with the primitive information from the manufacturers only, such as the mean and standard deviation of lifetime, to plan for the maintenance activities. In this paper, the moment-based piecewise polynomial model (MPPM) are proposed to estimate the parameters of the reliability probability distribution of the products when only the mean and standard deviation of the product lifetime are known. This method employs a group of polynomial functions to estimate the two parameters of the Weibull Distribution according to the mathematical relationship between the shape parameter of two-parameters Weibull Distribution and the ratio of mean and standard deviation. Tests are carried out to evaluate the validity and accuracy of the proposed methods with discussions on its suitability of applications. The proposed method is particularly useful for reliability-critical systems, such as railway and power systems, in which the maintenance activities are scheduled according to the expected lifetimes of the system components.
Resumo:
Chromium oxide gel material was synthesised and appeared to be X-ray amorphous. The changes in the structure of the synthetic chromium oxide gel were investigated using hot-stage Raman spectroscopy based upon the results of thermogravimetric analysis. The thermally decomposed product of the synthetic chromium oxide gel in nitrogen atmosphere was confirmed to be crystalline Cr2O3 as determined by the hot-stage Raman spectra. Two bands were observed at 849 and 735 cm-1 in the Raman spectrum at 25 °C, which were attributed to the symmetric stretching modes of O-CrIII-OH and O-CrIII-O. With temperature increase, the intensity of the band at 849 cm-1 decreased, while the band at 735 cm-1 increased. These changes in intensity are attributed to the loss of OH groups and formation of O-CrIII-O units in the structure. A strongly hydrogen bonded water H-O-H bending band was found at 1704 cm-1 in the Raman spectrum of the chromium oxide gel, however this band shifted to around 1590 cm-1 due to destruction of the hydrogen bonds upon thermal treatment. Six new Raman bands were observed at 578, 540, 513, 390, 342 and 303 cm-1 attributed to the thermal decomposed product Cr2O3. The use of the hot-stage Raman microscope enabled low-temperature phase changes brought about through dehydration and dehydroxylation to be studied.
Resumo:
Purpose: Flickering stimuli increase the metabolic demand of the retina,making it a sensitive perimetric stimulus to the early onset of retinal disease. We determine whether flickering stimuli are a sensitive indicator of vision deficits resulting from to acute, mild systemic hypoxia when compared to standard static perimetry. Methods: Static and flicker visual perimetry were performed in 14 healthy young participants while breathing 12% oxygen (hypoxia) under photopic illumination. The hypoxia visual field data were compared with the field data measured during normoxia. Absolute sensitivities (in dB) were analysed in seven concentric rings at 1°, 3°, 6°, 10°, 15°, 22° and 30° eccentricities as well as mean defect (MD) and pattern defect (PD) were calculated. Preliminary data are reported for mesopic light levels. Results: Under photopic illumination, flicker and static visual field sensitivities at all eccentricities were not significantly different between hypoxia and normoxia conditions. The mean defect and pattern defect were not significantly different for either test between the two oxygenation conditions. Conclusion: Although flicker stimulation increases cellular metabolism, flicker photopic visual field impairment is not detected during mild hypoxia. These findings contrast with electrophysiological flicker tests in young participants that show impairment at photopic illumination during the same levels of mild hypoxia. Potential mechanisms contributing to the difference between the visual fields and electrophysiological flicker tests including variability in perimetric data, neuronal adaptation and vascular autoregulation, are considered. The data have implications for the use of visual perimetry in the detection of ischaemic/hypoxic retinal disorders under photopic and mesopic light levels.
Resumo:
Along with their essential role in electricity transmission and distribution, some powerlines also generate large concentrations of corona ions. This study aimed at comprehensive investigation of corona ions, vertical dc e-field, ambient aerosol particle charge and particle number concentration levels in the proximity of some high/sub-transmission voltage powerlines. The influence of meteorology on the instantaneous value of these parameters, and the possible existence of links or associations between the parameters measured were also statistically investigated. The presence of positive and negative polarities of corona ions was associated with variation in the mean vertical dc e-field, ambient ion and particle charge concentration level. Though these variations increased with wind speed, their values also decreased with distance from the powerlines. Predominately positive polarities of ions were recorded up to a distance of 150 m (with the maximum values recorded 50 m downwind of the powerlines). At 200 m from the source, negative ions predominated. Particle number concentration levels however remained relatively constant (103 particle cm-3) irrespective of the sampling site and distance from the powerlines. Meteorological factors of temperature, humidity and wind direction showed no influence on the electrical parameters measured. The study also discovered that e-field measurements were not necessarily a true representation of the ground-level ambient ion/particle charge concentrations.
Resumo:
On the microscale, migration, proliferation and death are crucial in the development, homeostasis and repair of an organism; on the macroscale, such effects are important in the sustainability of a population in its environment. Dependent on the relative rates of migration, proliferation and death, spatial heterogeneity may arise within an initially uniform field; this leads to the formation of spatial correlations and can have a negative impact upon population growth. Usually, such effects are neglected in modeling studies and simple phenomenological descriptions, such as the logistic model, are used to model population growth. In this work we outline some methods for analyzing exclusion processes which include agent proliferation, death and motility in two and three spatial dimensions with spatially homogeneous initial conditions. The mean-field description for these types of processes is of logistic form; we show that, under certain parameter conditions, such systems may display large deviations from the mean field, and suggest computationally tractable methods to correct the logistic-type description.
Resumo:
The neutron logging method has been widely used for field measurement of soil moisture content. This non-destructive method permitted the measurement of in-situ soil moisture content at various depths without the need for burying any sensor. Twenty-three sites located around regional Melbourne have been selected for long term monitoring of soil moisture content using neutron probe. Soil samples collected during the installation are used for site characterisation and neutron probe calibration purposes. A linear relationship is obtained between the corrected neutron probe reading and moisture content for both the individual and combined data from seven sites. It is observed that the liner relationship, developed using combined data, can be used for all sites with an average accuracy of about 80%. Monitoring of the variation of soil moisture content with depth in six months for two sites is presented in this paper.
Resumo:
Purpose. To investigate evidence-based visual field size criteria for referral of low-vision (LV) patients for mobility rehabilitation. Methods. One hundred and nine participants with LV and 41 age-matched participants with normal sight (NS) were recruited. The LV group was heterogeneous with diverse causes of visual impairment. We measured binocular kinetic visual fields with the Humphrey Field Analyzer and mobility performance on an obstacle-rich, indoor course. Mobility was assessed as percent preferred walking speed (PPWS) and number of obstacle-contact errors. The weighted kappa coefficient of association (κr) was used to discriminate LV participants with both unsafe and inefficient mobility from those with adequate mobility on the basis of their visual field size for the full sample and for subgroups according to type of visual field loss and whether or not the participants had previously received orientation and mobility training. Results. LV participants with both PPWS <38% and errors >6 on our course were classified as having inadequate (inefficient and unsafe) mobility compared with NS participants. Mobility appeared to be first compromised when the visual field was less than about 1.2 steradians (sr; solid angle of a circular visual field of about 70° diameter). Visual fields <0.23 and 0.63 sr (31 to 52° diameter) discriminated patients with at-risk mobility for the full sample and across the two subgroups. A visual field of 0.05 sr (15° diameter) discriminated those with critical mobility. Conclusions. Our study suggests that: practitioners should be alert to potential mobility difficulties when the visual field is less than about 1.2 sr (70° diameter); assessment for mobility rehabilitation may be warranted when the visual field is constricted to about 0.23 to 0.63 sr (31 to 52° diameter) depending on the nature of their visual field loss and previous history (at risk); and mobility rehabilitation should be conducted before the visual field is constricted to 0.05 sr (15° diameter; critical).
Resumo:
One of the faba bean viruses found in West Asia and North Africa was identified as broad bean mottle virus (BBMV) by host reactions, particle morphology and size, serology, and granular, often vesiculated cytoplasmic inclusions. Detailed research on four isolates, one each from Morocco, Tunisia, Sudan and Syria, provided new information on the virus. The isolates, though indistinguishable in ELISA or gel-diffusion tests, differed slightly in host range and symptoms. Twenty-one species (12 legumes and 9 non-legumes) out of 27 tested were systemically infected, and 14 of these by all four isolates. Infection in several species was symptomless, but major legumes such as chickpea, lentil and especially pea, suffered severely from infection. All 23 genotypes of faba bean, 2 of chickpea, 4 of lentil, 11 out of 21 of Phaseolus bean, and 16 out of 17 of pea were systemically sensitive to the virus. Twelve plant species were found to be new potential hosts and cucumber a new local-lesion test plant of the virus. BBMV particles occurred in faba bean plants in very high concentrations and seed transmission in this species (1.37%) was confirmed. An isolate from Syria was purified and two antisera were produced, one of which was used in ELISA to detect BBMV in faba bean field samples. Two hundred and three out of the 789 samples with symptoms suggestive of virus infection collected in 1985, 1986 and 1987, were found infected with BBMV: 4 out of 70 (4/70) tested samples from Egypt, 0/44 from Lebanon, 1/15 from Morocco, 46/254 from Sudan, 72/269 from Syria and 80/137 from Tunisia. This is the first report on its occurrence in Egypt, Syria and Tunisia. The virus is a potential threat to crop improvement in the region.
Resumo:
The genetic structure of rice tungro bacilliform virus (RTBV) populations within and between growing sites was analyzed in a collection of natural field isolates from different rice varieties grown in eight tungro-endemic sites of the Philippines. Total DNA extracts from 345 isolates were digested with EcoRV restriction enzyme and hybridized with a full-length probe of RTBV, a procedure shown in preliminary experiments capable of revealing high levels of polymorphism in RTBV field isolates. In the total population, 17 distinct EcoRV-based genome profiles (genotypes) were identified and used as indicators for virus diversity. Distinct sets of genotypes occurred in Isabela and North Cotabato provinces suggesting a geographic isolation of virus populations. However, among the sites in each province, there were few significant differences in the genotype compositions of virus populations. The number of genotypes detected at a site varied from two to nine with a few genotypes dominating. In general the isolates at a site persisted from season to season indicating a genetic stability for the local virus population. Over the sampling time, IRRI rice varieties, which have green leafhopper resistance genes, supported similar virus populations to those supported by other varieties, indicating that the variety of the host exerted no apparent selection pressures. Insect transmission experiments on selected RTBV field isolates showed that dramatic shifts in genotype and phenotype distributions can occur in response to host /environmental shifts.
Resumo:
The aim of this paper is to aid researchers in selecting appropriate qualitative methods in order to develop and improve future studies in the field of emotional design. These include observations, think-aloud protocols, questionnaires, diaries and interviews. Based on the authors’ experiences, it is proposed that the methods under review can be successfully used for collecting data on emotional responses to evaluate user product relationships. This paper reviews the methods; discusses the suitability, advantages and challenges in relation to design and emotion studies. Furthermore, the paper outlines the potential impact of technology on the application of these methods, discusses the implications of these methods for emotion research and concludes with recommendations for future work in this area.