488 resultados para Electric network topology
Resumo:
The selection criteria for contractor pre-qualification are characterized by the co-existence of both quantitative and qualitative data. The qualitative data is non-linear, uncertain and imprecise. An ideal decision support system for contractor pre-qualification should have the ability of handling both quantitative and qualitative data, and of mapping the complicated nonlinear relationship of the selection criteria, such that rational and consistent decisions can be made. In this research paper, an artificial neural network model was developed to assist public clients identifying suitable contractors for tendering. The pre-qualification criteria (variables) were identified for the model. One hundred and twelve real pre-qualification cases were collected from civil engineering projects in Hong Kong, and eighty-eight hypothetical pre-qualification cases were also generated according to the “If-then” rules used by professionals in the pre-qualification process. The results of the analysis totally comply with current practice (public developers in Hong Kong). Each pre-qualification case consisted of input ratings for candidate contractors’ attributes and their corresponding pre-qualification decisions. The training of the neural network model was accomplished by using the developed program, in which a conjugate gradient descent algorithm was incorporated for improving the learning performance of the network. Cross-validation was applied to estimate the generalization errors based on the “re-sampling” of training pairs. The case studies show that the artificial neural network model is suitable for mapping the complicated nonlinear relationship between contractors’ attributes and their corresponding pre-qualification (disqualification) decisions. The artificial neural network model can be concluded as an ideal alternative for performing the contractor pre-qualification task.
Resumo:
Reflective learning is vital for successful practice-led education such as animation, multimedia design and graphic design, and social network sites can accommodate various learning styles for effective reflective learning. In this paper, the researcher studies reflective learning through social network sites with two animation units. These units aim to provide students with an understanding of the tasks and workflows involved in the production of style sheets, character sheets and motion graphics for use in 3D productions for film and television and game design. In particular, an assessment in these units requires students to complete their online reflective journals throughout the semester. The reflective learning has been integrated within the unit design and students are encouraged to reflect weekly learning processes and outcomes. A survey evaluating for students’ learning experience was conducted, and its outcomes indicate that social network site based reflective learning will not be effective without considering students’ learning circumstances and designing peer-to-peer interactions.
Resumo:
The creative industries are important because they are clustered at the point of attraction for a billion or more young people around the world. They're the drivers of demographic, economic and political change. They start from the individual talent of the creative artist and the individual desire and aspiration of the audience. These are the raw materials for innovation, change and emergent culture, scaled up to form new industries and coordinated into global markets based on social networks.
Resumo:
Networks form a key part of the infrastructure of contemporary governance arrangements and, as such, are likely to continue for some time. Networks can take many forms and be formed for many reasons. Some networks have been explicitly designed to generate a collective response to an issue; some arise from a top down perspective through mandate or coercion; while others rely more heavily on interpersonal relations and doing the right thing. In this paper, these three different perspectives are referred to as the “3I”s: Instrumental, Institutional or Interpersonal. It is proposed that these underlying motivations will affect the process dynamics within the different types of networks in different ways and therefore influence the type of outcomes achieved. This proposition is tested through a number of case studies. An understanding of these differences will lead to more effective design, management and clearer expectations of what can be achieved through networks.
Resumo:
This paper describes the use of the Chimera Architecture as the basis for a generative rhythmic improvisation system that is intended for use in ensemble contexts. This interactive soft- ware system learns in real time based on an audio input from live performers. The paper describes the components of the Chimera Architecture including a novel analysis engine that uses prediction to robustly assess the rhythmic salience of the input stream. Analytical results are stored in a hierarchical structure that includes multiple scenarios which allow ab- stracted and alternate interpretations of the current metrical context. The system draws upon this Chimera Architecture when generating a musical response. The generated rhythms are intended to have a particular ambiguity in relation to the music performance by other members of the ensemble. Ambi- guity is controlled through alternate interpretations of the Chimera. We describe an implementation of the Chimera Ar- chitecture that focuses on rhythmic material, and present and discuss initial experimental results of the software system playing along with recordings of a live performance.
Resumo:
In this research, we aim to identify factors that significantly affect the clickthrough of Web searchers. Our underlying goal is determine more efficient methods to optimize the clickthrough rate. We devise a clickthrough metric for measuring customer satisfaction of search engine results using the number of links visited, number of queries a user submits, and rank of clicked links. We use a neural network to detect the significant influence of searching characteristics on future user clickthrough. Our results show that high occurrences of query reformulation, lengthy searching duration, longer query length, and the higher ranking of prior clicked links correlate positively with future clickthrough. We provide recommendations for leveraging these findings for improving the performance of search engine retrieval and result ranking, along with implications for search engine marketing
Resumo:
An alternative approach to port decoupling and matching of arrays with tightly coupled elements is proposed. The method is based on the inherent decoupling effect obtained by feeding the orthogonal eigenmodes of the array. For this purpose, a modal feed network is connected to the array. The decoupled external ports of the feed network may then be matched independently by using conventional matching circuits. Such a system may be used in digital beam forming applications with good signal-to-noise performance. The theory is applicable to arrays with an arbitrary number of elements, but implementation is only practical for smaller arrays. The principle is illustrated by means of two examples.
Resumo:
An element spacing of less than half a wavelength introduces strong mutual coupling between the ports of compact antenna arrays. The strong coupling causes significant system performance degradation. A decoupling network may compensate for the mutual coupling. Alternatively, port decoupling can be achieved using a modal feed network. In response to an input signal at one of the input ports, this feed network excites the antenna elements in accordance with one of the eigenvectors of the array scattering parameter matrix. In this paper, a novel 4-element monopole array is described. The feed network of the array is implemented as a planar ring-type circuit in stripline with four coupled line sections. The new configuration offers a significant reduction in size, resulting in a very compact array.
Resumo:
This paper presents the preliminary results in establishing a strategy for predicting Zenith Tropospheric Delay (ZTD) and relative ZTD (rZTD) between Continuous Operating Reference Stations (CORS) in near real-time. It is anticipated that the predicted ZTD or rZTD can assist the network-based Real-Time Kinematic (RTK) performance over long inter-station distances, ultimately, enabling a cost effective method of delivering precise positioning services to sparsely populated regional areas, such as Queensland. This research firstly investigates two ZTD solutions: 1) the post-processed IGS ZTD solution and 2) the near Real-Time ZTD solution. The near Real-Time solution is obtained through the GNSS processing software package (Bernese) that has been deployed for this project. The predictability of the near Real-Time Bernese solution is analyzed and compared to the post-processed IGS solution where it acts as the benchmark solution. The predictability analyses were conducted with various prediction time of 15, 30, 45, and 60 minutes to determine the error with respect to timeliness. The predictability of ZTD and relative ZTD is determined (or characterized) by using the previously estimated ZTD as the predicted ZTD of current epoch. This research has shown that both the ZTD and relative ZTD predicted errors are random in nature; the STD grows from a few millimeters to sub-centimeters while the predicted delay interval ranges from 15 to 60 minutes. Additionally, the RZTD predictability shows very little dependency on the length of tested baselines of up to 1000 kilometers. Finally, the comparison of near Real-Time Bernese solution with IGS solution has shown a slight degradation in the prediction accuracy. The less accurate NRT solution has an STD error of 1cm within the delay of 50 minutes. However, some larger errors of up to 10cm are observed.
Resumo:
With the increasing resolution of remote sensing images, road network can be displayed as continuous and homogeneity regions with a certain width rather than traditional thin lines. Therefore, road network extraction from large scale images refers to reliable road surface detection instead of road line extraction. In this paper, a novel automatic road network detection approach based on the combination of homogram segmentation and mathematical morphology is proposed, which includes three main steps: (i) the image is classified based on homogram segmentation to roughly identify the road network regions; (ii) the morphological opening and closing is employed to fill tiny holes and filter out small road branches; and (iii) the extracted road surface is further thinned by a thinning approach, pruned by a proposed method and finally simplified with Douglas-Peucker algorithm. Lastly, the results from some QuickBird images and aerial photos demonstrate the correctness and efficiency of the proposed process.
Resumo:
This paper presents a new DC-DC Multi-Output Boost (MOB) converter which can share its total output between different series of output voltages for low and high power applications. This configuration can be utilised instead of several single output power supplies. This is a compatible topology for a diode-clamed inverter in the grid connection systems, where boosting low rectified output-voltage and series DC link capacitors is required. To verify the proposed topology, steady state and dynamic analysis of a MOB converter are examined. A simple control strategy has been proposed to demonstrate the performance of the proposed topology for a double-output boost converter. The topology and its control strategy can easily be extended to offer multiple outputs. Simulation and experimental results are presented to show the validity of the control strategy for the proposed converter.