258 resultados para Crossing Traffic.
Resumo:
Serving as a powerful tool for extracting localized variations in non-stationary signals, applications of wavelet transforms (WTs) in traffic engineering have been introduced; however, lacking in some important theoretical fundamentals. In particular, there is little guidance provided on selecting an appropriate WT across potential transport applications. This research described in this paper contributes uniquely to the literature by first describing a numerical experiment to demonstrate the shortcomings of commonly-used data processing techniques in traffic engineering (i.e., averaging, moving averaging, second-order difference, oblique cumulative curve, and short-time Fourier transform). It then mathematically describes WT’s ability to detect singularities in traffic data. Next, selecting a suitable WT for a particular research topic in traffic engineering is discussed in detail by objectively and quantitatively comparing candidate wavelets’ performances using a numerical experiment. Finally, based on several case studies using both loop detector data and vehicle trajectories, it is shown that selecting a suitable wavelet largely depends on the specific research topic, and that the Mexican hat wavelet generally gives a satisfactory performance in detecting singularities in traffic and vehicular data.
Resumo:
Many governments throughout the world rely heavily on traffic law enforcement programs to modify driver behaviour and enhance road safety. There are two related functions of traffic law enforcement, apprehension and deterrence, and these are achieved through three processes: the establishment of traffic laws, the policing of those laws, and the application of penalties and sanctions to offenders. Traffic policing programs can vary by visibility (overt or covert) and deployment methods (scheduled and non-scheduled), while sanctions can serve to constrain, deter or reform offending behaviour. This chapter will review the effectiveness of traffic law enforcement strategies from the perspective of a range of high-risk, illegal driving behaviours including drink/drug driving, speeding, seat belt use and red light running. Additionally, this chapter discusses how traffic police are increasingly using technology to enforce traffic laws and thus reduce crashes. The chapter concludes that effective traffic policing involves a range of both overt and covert operations and includes a mix of automatic and more traditional manual enforcement methods. It is important to increase both the perceived and actual risk of detection by ensuring that traffic law enforcement operations are sufficiently intensive, unpredictable in nature and conducted as widely as possible across the road network. A key means of maintaining the unpredictability of operations is through the random deployment of enforcement and/or the random checking of drivers. The impact of traffic enforcement is also heightened when it is supported by public education campaigns. In the future, technological improvements will allow the use of more innovative enforcement strategies. Finally, further research is needed to continue the development of traffic policing approaches and address emerging road safety issues.
Resumo:
Navigational safety analysis relying on collision statistics is often hampered because of low number of observations. A promising alternative approach that overcomes this problem is proposed in this paper. By analyzing critical vessel interactions this approach proactively measures collision risk in port waters. The proposed method is illustrated for quantitative measurement of collision risks in Singapore port fairways, and validated by examining correlations between the measured risks with those perceived by pilots. This method is an ethically appealing alternative to the collision-based analysis for fast, reliable and effective safety assessment, thus possesses great potential for managing collision risks in port waters.
Resumo:
Navigational collisions are one of the major safety concerns for many seaports. Despite the extent of work recently done on collision risk analysis in port waters, little is known about the influencing factors of the risk. This paper develops a technique for modeling collision risks in port waterways in order to examine the associations between the risks and the geometric, traffic, and regulatory control characteristics of waterways. A binomial logistic model, which accounts for the correlations in the risks of a particular fairway at different time periods, is derived from traffic conflicts and calibrated for the Singapore port fairways. Estimation results show that the fairways attached to shoreline, traffic intersection and international fairway attribute higher risks, whereas those attached to confined water and local fairway possess lower risks. Higher risks are also found in the fairways featuring higher degree of bend, lower depth of water, higher numbers of cardinal and isolated danger marks, higher density of moving ships and lower operating speed. The risks are also found to be higher for night-time conditions.
Resumo:
Human personality is an important component of psychological factors affecting pedestrian crossing. This paper reports a questionnaire survey on the effects of pedestrian personalities (including neuroticism, extraversion, openness, agreeableness and conscientiousness) on pedestrian violation in China. 675 feedbacks were obtained, of which 535 samples were valid for analysis. The results of the hierarchical regression analysis showed that educational level had significant effect on violation; agreeableness had significant effect on violation, conditional compliance and unconditional compliance; consciousness had significant effect on violation and conditional compliance; extraversion had significant effect on unconditional compliance; neuroticism had significant effect on violation; educational level had significant effect on violation. The results implied that psychological measures played a very important role in pedestrian safety.
Resumo:
This paper investigates relationship between traffic conditions and the crash occurrence likelihood (COL) using the I-880 data. To remedy the data limitations and the methodological shortcomings suffered by previous studies, a multiresolution data processing method is proposed and implemented, upon which binary logistic models were developed. The major findings of this paper are: 1) traffic conditions have significant impacts on COL at the study site; Specifically, COL in a congested (transitioning) traffic flow is about 6 (1.6) times of that in a free flow condition; 2)Speed variance alone is not sufficient to capture traffic dynamics’ impact on COL; a traffic chaos indicator that integrates speed, speed variance, and flow is proposed and shows a promising performance; 3) Models based on aggregated data shall be interpreted with caution. Generally, conclusions obtained from such models shall not be generalized to individual vehicles (drivers) without further evidences using high-resolution data and it is dubious to either claim or disclaim speed kills based on aggregated data.
Resumo:
The objective of this chapter is to provide rail practitioners with a practical approach for determining safety requirements of low-cost level crossing warning devices (LCLCWDs) on an Australian railway by way of a case study. LCLCWDs, in theory, allow railway operators to improve the safety of passively controlled crossing by upgrading a larger number of level crossings with the same budget that would otherwise be used to upgrade these using the conventional active level crossing control technologies, e.g. track circuit initiated flashing light systems. The chapter discusses the experience and obstacles of adopting LCLCWDs in Australia, and demonstrates how the risk-based approach may be used to make the case for LCLCWDs.
Resumo:
Most crash severity studies ignored severity correlations between driver-vehicle units involved in the same crashes. Models without accounting for these within-crash correlations will result in biased estimates in the factor effects. This study developed a Bayesian hierarchical binomial logistic model to identify the significant factors affecting the severity level of driver injury and vehicle damage in traffic crashes at signalized intersections. Crash data in Singapore were employed to calibrate the model. Model fitness assessment and comparison using Intra-class Correlation Coefficient (ICC) and Deviance Information Criterion (DIC) ensured the suitability of introducing the crash-level random effects. Crashes occurring in peak time, in good street lighting condition, involving pedestrian injuries are associated with a lower severity, while those in night time, at T/Y type intersections, on right-most lane, and installed with red light camera have larger odds of being severe. Moreover, heavy vehicles have a better resistance on severe crash, while crashes involving two-wheel vehicles, young or aged drivers, and the involvement of offending party are more likely to result in severe injuries.
Resumo:
Poisson distribution has often been used for count like accident data. Negative Binomial (NB) distribution has been adopted in the count data to take care of the over-dispersion problem. However, Poisson and NB distributions are incapable of taking into account some unobserved heterogeneities due to spatial and temporal effects of accident data. To overcome this problem, Random Effect models have been developed. Again another challenge with existing traffic accident prediction models is the distribution of excess zero accident observations in some accident data. Although Zero-Inflated Poisson (ZIP) model is capable of handling the dual-state system in accident data with excess zero observations, it does not accommodate the within-location correlation and between-location correlation heterogeneities which are the basic motivations for the need of the Random Effect models. This paper proposes an effective way of fitting ZIP model with location specific random effects and for model calibration and assessment the Bayesian analysis is recommended.
Resumo:
Navigational collisions are one of the major safety concerns in many seaports. To address this safety concern, a comprehensive and structured method of collision risk management is necessary. Traditionally management of port water collision risks has been relied on historical collision data. However, this collision-data-based approach is hampered by several shortcomings, such as randomness and rarity of collision occurrence leading to obtaining insufficient number of samples for a sound statistical analysis, insufficiency in explaining collision causation, and reactive approach to safety. A promising alternative approach that overcomes these shortcomings is the navigational traffic conflict technique that uses traffic conflicts as an alternative to the collision data. This paper proposes a collision risk management method by utilizing the principles of this technique. This risk management method allows safety analysts to diagnose safety deficiencies in a proactive manner, which, consequently, has great potential for managing collision risks in a fast, reliable and efficient manner.
Resumo:
There are about 4,000 garment industries in Bangladesh, most of them are clustered in and around the capital city. Together they account for 75 percent of the country's export earnings and employ around 1.8 million people which is almost one half of the total industrial workforce of the country. Though it is the most important economy sector of Bangladesh, unplanned and haphazardly built garment factories are also inducing many social, housing and most importantly urban transportation problems which are a great cause of concern. This study investigates the impact of garment industries on transportation, in particular road safety issues of garment workers. Data is collected to identify the locational problems of garment factories, spatial distribution of worker residences, and their travel pattern as well as to assess their walking and road crossing problems. Finally, recommendations are put forward to tackle transport problems arising from these unplanned establishments of export oriented garments industries in Dhaka Metropolitan City.
Resumo:
Particles emitted by vehicles are known to cause detrimental health effects, with their size and oxidative potential among the main factors responsible. Therefore, understanding the relationship between traffic composition and both the physical characteristics and oxidative potential of particles is critical. To contribute to the limited knowledge base in this area, we investigated this relationship in a 4.5 km road tunnel in Brisbane, Australia. On-road concentrations of ultrafine particles (<100 nm, UFPs), fine particles (PM2.5), CO, CO2 and particle associated reactive oxygen species (ROS) were measured using vehicle-based mobile sampling. UFPs were measured using a condensation particle counter and PM2.5 with a DustTrak aerosol photometer. A new profluorescent nitroxide probe, BPEAnit, was used to determine ROS levels. Comparative measurements were also performed on an above-ground road to assess the role of emission dilution on the parameters measured. The profile of UFP and PM2.5 concentration with distance through the tunnel was determined, and demonstrated relationships with both road gradient and tunnel ventilation. ROS levels in the tunnel were found to be high compared to an open road with similar traffic characteristics, which was attributed to the substantial difference in estimated emission dilution ratios on the two roadways. Principal component analysis (PCA) revealed that the levels of pollutants and ROS were generally better correlated with total traffic count, rather than the traffic composition (i.e. diesel and gasoline-powered vehicles). A possible reason for the lack of correlation with HDV, which has previously been shown to be strongly associated with UFPs especially, was the low absolute numbers encountered during the sampling. This may have made their contribution to in-tunnel pollution largely indistinguishable from the total vehicle volume. For ROS, the stronger association observed with HDV and gasoline vehicles when combined (total traffic count) compared to when considered individually may signal a role for the interaction of their emissions as a determinant of on-road ROS in this pilot study. If further validated, this should not be overlooked in studies of on- or near-road particle exposure and its potential health effects.
Resumo:
Decision table and decision rules play an important role in rough set based data analysis, which compress databases into granules and describe the associations between granules. Granule mining was also proposed to interpret decision rules in terms of association rules and multi-tier structure. In this paper, we further extend granule mining to describe the relationships between granules not only by traditional support and confidence, but by diversity and condition diversity as well. Diversity measures how diverse of a granule associated with the other ganules, it provides a kind of novel knowledge in databases. Some experiments are conducted to test the proposed new concepts for describing the characteristics of a real network traffic data collection. The results show that the proposed concepts are promising.
Resumo:
The rate of singlet-to-triplet intersystem crossing in 1,4-didehydrobenzene (the biradical produced as a reactive intermediate in the thermal cycloaromatization of enediynes), cannot be increased by the application of an external magnetic field. The rate of product formation and the distribution of stable products of 2,3-di-n-propyl-1,4-didehydrobenzene thermolysis is unchanged at magnetic flux densities in the range 0–2000 G and at 66 000 G. Similarly, the rate of thermolysis of an unsymmetrical enediyne is insensitive to magnetic field flux in the same range. This finding precludes the modulation of enediyne reaction rates in pharmaceutical and synthetic pursuits.