540 resultados para Cooperative Alcoholic Rehabilitation Program (Calif.)
Resumo:
The ability to accurately predict the lifetime of building components is crucial to optimizing building design, material selection and scheduling of required maintenance. This paper discusses a number of possible data mining methods that can be applied to do the lifetime prediction of metallic components and how different sources of service life information could be integrated to form the basis of the lifetime prediction model
Resumo:
Non Alcoholic Fatty Liver Disease (NAFLD) is a condition that is frequently seen but seldom investigated. Until recently, NAFLD was considered benign, self-limiting and unworthy of further investigation. This opinion is based on retrospective studies with relatively small numbers and scant follow-up of histology data. (1) The prevalence for adults, in the USA is, 30%, and NAFLD is recognized as a common and increasing form of liver disease in the paediatric population (1). Australian data, from New South Wales, suggests the prevalence of NAFLD in “healthy” 15 year olds as being 10%.(2) Non-alcoholic fatty liver disease is a condition where fat progressively invades the liver parenchyma. The degree of infiltration ranges from simple steatosis (fat only) to steatohepatitis (fat and inflammation) steatohepatitis plus fibrosis (fat, inflammation and fibrosis) to cirrhosis (replacement of liver texture by scarred, fibrotic and non functioning tissue).Non-alcoholic fatty liver is diagnosed by exclusion rather than inclusion. None of the currently available diagnostic techniques -liver biopsy, liver function tests (LFT) or Imaging; ultrasound, Computerised tomography (CT) or Magnetic Resonance Imaging (MRI) are specific for non-alcoholic fatty liver. An association exists between NAFLD, Non Alcoholic Steatosis Hepatitis (NASH) and irreversible liver damage, cirrhosis and hepatoma. However, a more pervasive aspect of NAFLD is the association with Metabolic Syndrome. This Syndrome is categorised by increased insulin resistance (IR) and NAFLD is thought to be the hepatic representation. Those with NAFLD have an increased risk of death (3) and it is an independent predictor of atherosclerosis and cardiovascular disease (1). Liver biopsy is considered the gold standard for diagnosis, (4), and grading and staging, of non-alcoholic fatty liver disease. Fatty-liver is diagnosed when there is macrovesicular steatosis with displacement of the nucleus to the edge of the cell and at least 5% of the hepatocytes are seen to contain fat (4).Steatosis represents fat accumulation in liver tissue without inflammation. However, it is only called non-alcoholic fatty liver disease when alcohol - >20gms-30gms per day (5), has been excluded from the diet. Both non-alcoholic and alcoholic fatty liver are identical on histology. (4).LFT’s are indicative, not diagnostic. They indicate that a condition may be present but they are unable to diagnosis what the condition is. When a patient presents with raised fasting blood glucose, low HDL (high density lipoprotein), and elevated fasting triacylglycerols they are likely to have NAFLD. (6) Of the imaging techniques MRI is the least variable and the most reproducible. With CT scanning liver fat content can be semi quantitatively estimated. With increasing hepatic steatosis, liver attenuation values decrease by 1.6 Hounsfield units for every milligram of triglyceride deposited per gram of liver tissue (7). Ultrasound permits early detection of fatty liver, often in the preclinical stages before symptoms are present and serum alterations occur. Earlier, accurate reporting of this condition will allow appropriate intervention resulting in better patient health outcomes. References 1. Chalasami N. Does fat alone cause significant liver disease: It remains unclear whether simple steatosis is truly benign. American Gastroenterological Association Perspectives, February/March 2008 www.gastro.org/wmspage.cfm?parm1=5097 Viewed 20th October, 2008 2. Booth, M. George, J.Denney-Wilson, E: The population prevalence of adverse concentrations with adiposity of liver tests among Australian adolescents. Journal of Paediatrics and Child Health.2008 November 3. Catalano, D, Trovato, GM, Martines, GF, Randazzo, M, Tonzuso, A. Bright liver, body composition and insulin resistance changes with nutritional intervention: a follow-up study .Liver Int.2008; February 1280-9 4. Choudhury, J, Sanysl, A. Clinical aspects of Fatty Liver Disease. Semin in Liver Dis. 2004:24 (4):349-62 5. Dionysus Study Group. Drinking factors as cofactors of risk for alcohol induced liver change. Gut. 1997; 41 845-50 6. Preiss, D, Sattar, N. Non-alcoholic fatty liver disease: an overview of prevalence, diagnosis, pathogenesis and treatment considerations. Clin Sci.2008; 115 141-50 7. American Gastroenterological Association. Technical review on nonalcoholic fatty liver disease. Gastroenterology.2002; 123: 1705-25
Resumo:
The construction industry is dynamic in nature. The concept of project success has remained ambiguously defined in the construction industry. Project success means different things to different people. While some authors consider time, cost and quality as the predominant targets, others suggest that success is something more complex. The aim of this report is to develop a framework for measuring success of construction projects. A range of Key Performance Indicators (KPIs), measured both objectively and subjectively is developed. The identification of KPIs helps set a benchmark for measuring the performance of a construction project and provides significant insights into developing a general and comprehensive base for further research.
Resumo:
• Introduction: Concern and action for rural road safety is relatively new in Australia in comparison to the field of traffic safety as a whole. In 2003, a program of research was begun by the Centre for Accident Research and Road Safety - Queensland (CARRS-Q) and the Rural Health Research Unit (RHRU) at James Cook University to investigate factors contributing to serious rural road crashes in the North Queensland region. This project was funded by the Premier’s Department, Main Roads Department, Queensland Transport, QFleet, Queensland Rail, Queensland Ambulance Service, Department of Natural Resources and Queensland Police Service. Additional funding was provided by NRMA Insurance for a PhD scholarship. In-kind support was provided through the four hospitals used for data collection, namely Cairns Base Hospital, The Townsville Hospital, Mount Isa Hospital and Atherton Hospital.----- The primary aim of the project was to: Identify human factors related to the occurrence of serious traffic incidents in rural and remote areas of Australia, and to the trauma suffered by persons as a result of these incidents, using a sample drawn from a rural and remote area in North Queensland.----- The data and analyses presented in this report are the core findings from two broad studies: a general examination of fatalities and casualties from rural and remote crashes for the period 1 March 2004 until 30 June 2007, and a further linked case-comparison study of hospitalised patients compared with a sample of non-crash-involved drivers.----- • Method: The study was undertaken in rural North Queensland, as defined by the Australian Bureau of Statistics (ABS) statistical divisions of North Queensland, Far North Queensland and North-West Queensland. Urban areas surrounding Townsville, Thuringowa and Cairns were not included. The study methodology was centred on serious crashes, as defined by a resulting hospitalisation for 24 hours or more and/or a fatality. Crashes meeting this criteria within the North Queensland region between 1 March 2004 and 30 June 2007 were identified through hospital records and interviewed where possible. Additional data was sourced from coroner’s reports, the Queensland Transport road crash database, the Queensland Ambulance Service and the study hospitals in the region.----- This report is divided into chapters corresponding to analyses conducted on the collected crash and casualty data.----- Chapter 3 presents an overview of all crashes and casualties identified during the study period. Details are presented in regard to the demographics and road user types of casualties; the locations, times, types, and circumstances of crashes; along with the contributing circumstances of crashes.----- Chapter 4 presents the results of summary statistics for all casualties for which an interview was able to be conducted. Statistics are presented separately for drivers and riders, passengers, pedestrians and cyclists. Details are also presented separately for drivers and riders crashing in off-road and on-road settings. Results from questionnaire data are presented in relation to demographics; the experience of the crash in narrative form; vehicle characteristics and maintenance; trip characteristics (e.g. purpose and length of journey; periods of fatigue and monotony; distractions from driving task); driving history; alcohol and drug use; medical history; driving attitudes, intentions and behaviour; attitudes to enforcement; and experience of road safety advertising.----- Chapter 5 compares the above-listed questionnaire results between on-road crash-involved casualties and interviews conducted in the region with non-crash-involved persons. Direct comparisons as well as age and sex adjusted comparisons are presented.----- Chapter 6 presents information on those casualties who were admitted to one of the study hospitals during the study period. Brief information is given regarding the demographic characteristics of these casualties. Emergency services’ data is used to highlight the characteristics of patient retrieval and transport to and between hospitals. The major injuries resulting from the crashes are presented for each region of the body and analysed by vehicle type, occupant type, seatbelt status, helmet status, alcohol involvement and nature of crash. Estimates are provided of the costs associated with in-hospital treatment and retrieval.----- Chapter 7 describes the characteristics of the fatal casualties and the nature and circumstances of the crashes. Demographics, road user types, licence status, crash type and contributing factors for crashes are presented. Coronial data is provided in regard to contributing circumstances (including alcohol, drugs and medical conditions), cause of death, resulting injuries, and restraint and helmet use.----- Chapter 8 presents the results of a comparison between casualties’ crash descriptions and police-attributed crash circumstances. The relative frequency of contributing circumstances are compared both broadly within the categories of behavioural, environmental, vehicle related, medical and other groupings and specifically for circumstances within these groups.----- Chapter 9 reports on the associated research projects which have been undertaken on specific topics related to rural road safety.----- Finally, Chapter 10 reports on the conclusions and recommendations made from the program of research.---- • Major Recommendations : From the findings of these analyses, a number of major recommendations were made: + Male drivers and riders - Male drivers and riders should continue to be the focus of interventions, given their very high representation among rural and remote road crash fatalities and serious injuries.----- - The group of males aged between 30 and 50 years comprised the largest number of casualties and must also be targeted for change if there is to be a meaningful improvement in rural and remote road safety.----- + Motorcyclists - Single vehicle motorcycle crashes constitute over 80% of serious, on-road rural motorcycle crashes and need particular attention in development of policy and infrastructure.----- - The motorcycle safety consultation process currently being undertaken by Queensland Transport (via the "Motorbike Safety in Queensland - Consultation Paper") is strongly endorsed. As part of this process, particular attention needs to be given to initiatives designed to reduce rural and single vehicle motorcycle crashes.----- - The safety of off-road riders is a serious problem that falls outside the direct responsibility of either Transport or Health departments. Responsibility for this issue needs to be attributed to develop appropriate policy, regulations and countermeasures.----- + Road safety for Indigenous people - Continued resourcing and expansion of The Queensland Aboriginal Peoples and Torres Strait Islander Peoples Driver Licensing Program to meet the needs of remote and Indigenous communities with significantly lower licence ownership levels.----- - Increased attention needs to focus on the contribution of geographic disadvantage (remoteness) factors to remote and Indigenous road trauma.----- + Road environment - Speed is the ‘final common pathway’ in determining the severity of rural and remote crashes and rural speed limits should be reduced to 90km/hr for sealed off-highway roads and 80km/hr for all unsealed roads as recommended in the Austroads review and in line with the current Tasmanian government trial.----- - The Department of Main Roads should monitor rural crash clusters and where appropriate work with local authorities to conduct relevant audits and take mitigating action. - The international experts at the workshop reviewed the data and identified the need to focus particular attention on road design management for dangerous curves. They also indicated the need to maximise the use of audio-tactile linemarking (audible lines) and rumble strips to alert drivers to dangerous conditions and behaviours.----- + Trauma costs - In accordance with Queensland Health priorities, recognition should be given to the substantial financial costs associated with acute management of trauma resulting from serious rural and remote crashes.----- - Efforts should be made to develop a comprehensive, regionally specific costing formula for road trauma that incorporates the pre-hospital, hospital and post-hospital phases of care. This would inform health resource allocation and facilitate the evaluation of interventions.----- - The commitment of funds to the development of preventive strategies to reduce rural and remote crashes should take into account the potential cost savings associated with trauma.----- - A dedicated study of the rehabilitation needs and associated personal and healthcare costs arising from rural and remote road crashes should be undertaken.----- + Emergency services - While the study has demonstrated considerable efficiency in the response and retrieval systems of rural and remote North Queensland, relevant Intelligent Transport Systems technologies (such as vehicle alarm systems) to improve crash notification should be both developed and evaluated.----- + Enforcement - Alcohol and speed enforcement programs should target the period between 2 and 6pm because of the high numbers of crashes in the afternoon period throughout the rural region.----- + Drink driving - Courtesy buses should be advocated and schemes such as the Skipper project promoted as local drink driving countermeasures in line with the very high levels of community support for these measures identified in the hospital study.------ - Programs should be developed to target the high levels of alcohol consumption identified in rural and remote areas and related involvement in crashes.----- - Referrals to drink driving rehabilitation programs should be mandated for recidivist offenders.----- + Data requirements - Rural and remote road crashes should receive the same quality of attention as urban crashes. As such, it is strongly recommended that increased resources be committed to enable dedicated Forensic Crash Units to investigate rural and remote fatal and serious injury crashes.----- - Transport department records of rural and remote crashes should record the crash location using the national ARIA area classifications used by health departments as a means to better identifying rural crashes.----- - Rural and remote crashes tend to be unnoticed except in relatively infrequent rural reviews. They should receive the same level of attention and this could be achieved if fatalities and fatal crashes were coded by the ARIA classification system and included in regular crash reporting.----- - Health, Transport and Police agencies should collect a common, minimal set of data relating to road crashes and injuries, including presentations to small rural and remote health facilities.----- + Media and community education programmes - Interventions seeking to highlight the human contribution to crashes should be prioritised. Driver distraction, alcohol and inappropriate speed for the road conditions are key examples of such behaviours.----- - Promotion of basic safety behaviours such as the use of seatbelts and helmets should be given a renewed focus.----- - Knowledge, attitude and behavioural factors that have been identified for the hospital Brief Intervention Trial should be considered in developing safety campaigns for rural and remote people. For example challenging the myth of the dangerous ‘other’ or ‘non-local’ driver.----- - Special educational initiatives on the issues involved in rural and remote driving should be undertaken. For example the material used by Main Roads, the Australian Defence Force and local initiatives.
Resumo:
Experience plays an important role in building management. “How often will this asset need repair?” or “How much time is this repair going to take?” are types of questions that project and facility managers face daily in planning activities. Failure or success in developing good schedules, budgets and other project management tasks depend on the project manager's ability to obtain reliable information to be able to answer these types of questions. Young practitioners tend to rely on information that is based on regional averages and provided by publishing companies. This is in contrast to experienced project managers who tend to rely heavily on personal experience. Another aspect of building management is that many practitioners are seeking to improve available scheduling algorithms, estimating spreadsheets and other project management tools. Such “micro-scale” levels of research are important in providing the required tools for the project manager's tasks. However, even with such tools, low quality input information will produce inaccurate schedules and budgets as output. Thus, it is also important to have a broad approach to research at a more “macro-scale.” Recent trends show that the Architectural, Engineering, Construction (AEC) industry is experiencing explosive growth in its capabilities to generate and collect data. There is a great deal of valuable knowledge that can be obtained from the appropriate use of this data and therefore the need has arisen to analyse this increasing amount of available data. Data Mining can be applied as a powerful tool to extract relevant and useful information from this sea of data. Knowledge Discovery in Databases (KDD) and Data Mining (DM) are tools that allow identification of valid, useful, and previously unknown patterns so large amounts of project data may be analysed. These technologies combine techniques from machine learning, artificial intelligence, pattern recognition, statistics, databases, and visualization to automatically extract concepts, interrelationships, and patterns of interest from large databases. The project involves the development of a prototype tool to support facility managers, building owners and designers. This final report presents the AIMMTM prototype system and documents how and what data mining techniques can be applied, the results of their application and the benefits gained from the system. The AIMMTM system is capable of searching for useful patterns of knowledge and correlations within the existing building maintenance data to support decision making about future maintenance operations. The application of the AIMMTM prototype system on building models and their maintenance data (supplied by industry partners) utilises various data mining algorithms and the maintenance data is analysed using interactive visual tools. The application of the AIMMTM prototype system to help in improving maintenance management and building life cycle includes: (i) data preparation and cleaning, (ii) integrating meaningful domain attributes, (iii) performing extensive data mining experiments in which visual analysis (using stacked histograms), classification and clustering techniques, associative rule mining algorithm such as “Apriori” and (iv) filtering and refining data mining results, including the potential implications of these results for improving maintenance management. Maintenance data of a variety of asset types were selected for demonstration with the aim of discovering meaningful patterns to assist facility managers in strategic planning and provide a knowledge base to help shape future requirements and design briefing. Utilising the prototype system developed here, positive and interesting results regarding patterns and structures of data have been obtained.
Resumo:
The construction industry has adapted information technology in its processes in terms of computer aided design and drafting, construction documentation and maintenance. The data generated within the construction industry has become increasingly overwhelming. Data mining is a sophisticated data search capability that uses classification algorithms to discover patterns and correlations within a large volume of data. This paper presents the selection and application of data mining techniques on maintenance data of buildings. The results of applying such techniques and potential benefits of utilising their results to identify useful patterns of knowledge and correlations to support decision making of improving the management of building life cycle are presented and discussed.
Resumo:
This report demonstrates the development of: • Development of software agents for data mining • Link data mining to building model in virtual environments • Link knowledge development with building model in virtual environments • Demonstration of software agents for data mining • Populate with maintenance data
Resumo:
This report presents the demonstration of software agents prototype system for improving maintenance management [AIMM] including: • Developing and implementing a user focused approach for mining the maintenance data of buildings. This report presents the demonstration of software agents prototype system for improving maintenance management [AIMM] including: • Developing and implementing a user focused approach for mining the maintenance data of buildings. • Refining the development of a multi agent system for data mining in virtual environments (Active Worlds) by developing and implementing a filtering agent on the results obtained from applying data mining techniques on the maintenance data. • Integrating the filtering agent within the multi agents system in an interactive networked multi-user 3D virtual environment. • Populating maintenance data and discovering new rules of knowledge.
Resumo:
Experience plays an important role in building management. “How often will this asset need repair?” or “How much time is this repair going to take?” are types of questions that project and facility managers face daily in planning activities. Failure or success in developing good schedules, budgets and other project management tasks depend on the project manager's ability to obtain reliable information to be able to answer these types of questions. Young practitioners tend to rely on information that is based on regional averages and provided by publishing companies. This is in contrast to experienced project managers who tend to rely heavily on personal experience. Another aspect of building management is that many practitioners are seeking to improve available scheduling algorithms, estimating spreadsheets and other project management tools. Such “micro-scale” levels of research are important in providing the required tools for the project manager's tasks. However, even with such tools, low quality input information will produce inaccurate schedules and budgets as output. Thus, it is also important to have a broad approach to research at a more “macro-scale.” Recent trends show that the Architectural, Engineering, Construction (AEC) industry is experiencing explosive growth in its capabilities to generate and collect data. There is a great deal of valuable knowledge that can be obtained from the appropriate use of this data and therefore the need has arisen to analyse this increasing amount of available data. Data Mining can be applied as a powerful tool to extract relevant and useful information from this sea of data. Knowledge Discovery in Databases (KDD) and Data Mining (DM) are tools that allow identification of valid, useful, and previously unknown patterns so large amounts of project data may be analysed. These technologies combine techniques from machine learning, artificial intelligence, pattern recognition, statistics, databases, and visualization to automatically extract concepts, interrelationships, and patterns of interest from large databases. The project involves the development of a prototype tool to support facility managers, building owners and designers. This Industry focused report presents the AIMMTM prototype system and documents how and what data mining techniques can be applied, the results of their application and the benefits gained from the system. The AIMMTM system is capable of searching for useful patterns of knowledge and correlations within the existing building maintenance data to support decision making about future maintenance operations. The application of the AIMMTM prototype system on building models and their maintenance data (supplied by industry partners) utilises various data mining algorithms and the maintenance data is analysed using interactive visual tools. The application of the AIMMTM prototype system to help in improving maintenance management and building life cycle includes: (i) data preparation and cleaning, (ii) integrating meaningful domain attributes, (iii) performing extensive data mining experiments in which visual analysis (using stacked histograms), classification and clustering techniques, associative rule mining algorithm such as “Apriori” and (iv) filtering and refining data mining results, including the potential implications of these results for improving maintenance management. Maintenance data of a variety of asset types were selected for demonstration with the aim of discovering meaningful patterns to assist facility managers in strategic planning and provide a knowledge base to help shape future requirements and design briefing. Utilising the prototype system developed here, positive and interesting results regarding patterns and structures of data have been obtained.
Resumo:
The building life cycle process is complex and prone to fragmentation as it moves through its various stages. The number of participants, and the diversity, specialisation and isolation both in space and time of their activities, have dramatically increased over time. The data generated within the construction industry has become increasingly overwhelming. Most currently available computer tools for the building industry have offered productivity improvement in the transmission of graphical drawings and textual specifications, without addressing more fundamental changes in building life cycle management. Facility managers and building owners are primarily concerned with highlighting areas of existing or potential maintenance problems in order to be able to improve the building performance, satisfying occupants and minimising turnover especially the operational cost of maintenance. In doing so, they collect large amounts of data that is stored in the building’s maintenance database. The work described in this paper is targeted at adding value to the design and maintenance of buildings by turning maintenance data into information and knowledge. Data mining technology presents an opportunity to increase significantly the rate at which the volumes of data generated through the maintenance process can be turned into useful information. This can be done using classification algorithms to discover patterns and correlations within a large volume of data. This paper presents how and what data mining techniques can be applied on maintenance data of buildings to identify the impediments to better performance of building assets. It demonstrates what sorts of knowledge can be found in maintenance records. The benefits to the construction industry lie in turning passive data in databases into knowledge that can improve the efficiency of the maintenance process and of future designs that incorporate that maintenance knowledge.