283 resultados para Compressed text search
Resumo:
The traditional searching method for model-order selection in linear regression is a nested full-parameters-set searching procedure over the desired orders, which we call full-model order selection. On the other hand, a method for model-selection searches for the best sub-model within each order. In this paper, we propose using the model-selection searching method for model-order selection, which we call partial-model order selection. We show by simulations that the proposed searching method gives better accuracies than the traditional one, especially for low signal-to-noise ratios over a wide range of model-order selection criteria (both information theoretic based and bootstrap-based). Also, we show that for some models the performance of the bootstrap-based criterion improves significantly by using the proposed partial-model selection searching method. Index Terms— Model order estimation, model selection, information theoretic criteria, bootstrap 1. INTRODUCTION Several model-order selection criteria can be applied to find the optimal order. Some of the more commonly used information theoretic-based procedures include Akaike’s information criterion (AIC) [1], corrected Akaike (AICc) [2], minimum description length (MDL) [3], normalized maximum likelihood (NML) [4], Hannan-Quinn criterion (HQC) [5], conditional model-order estimation (CME) [6], and the efficient detection criterion (EDC) [7]. From a practical point of view, it is difficult to decide which model order selection criterion to use. Many of them perform reasonably well when the signal-to-noise ratio (SNR) is high. The discrepancies in their performance, however, become more evident when the SNR is low. In those situations, the performance of the given technique is not only determined by the model structure (say a polynomial trend versus a Fourier series) but, more importantly, by the relative values of the parameters within the model. This makes the comparison between the model-order selection algorithms difficult as within the same model with a given order one could find an example for which one of the methods performs favourably well or fails [6, 8]. Our aim is to improve the performance of the model order selection criteria in cases where the SNR is low by considering a model-selection searching procedure that takes into account not only the full-model order search but also a partial model order search within the given model order. Understandably, the improvement in the performance of the model order estimation is at the expense of additional computational complexity.
Resumo:
This paper presents a framework for performing real-time recursive estimation of landmarks’ visual appearance. Imaging data in its original high dimensional space is probabilistically mapped to a compressed low dimensional space through the definition of likelihood functions. The likelihoods are subsequently fused with prior information using a Bayesian update. This process produces a probabilistic estimate of the low dimensional representation of the landmark visual appearance. The overall filtering provides information complementary to the conventional position estimates which is used to enhance data association. In addition to robotics observations, the filter integrates human observations in the appearance estimates. The appearance tracks as computed by the filter allow landmark classification. The set of labels involved in the classification task is thought of as an observation space where human observations are made by selecting a label. The low dimensional appearance estimates returned by the filter allow for low cost communication in low bandwidth sensor networks. Deployment of the filter in such a network is demonstrated in an outdoor mapping application involving a human operator, a ground and an air vehicle.
Resumo:
Many data mining techniques have been proposed for mining useful patterns in text documents. However, how to effectively use and update discovered patterns is still an open research issue, especially in the domain of text mining. Since most existing text mining methods adopted term-based approaches, they all suffer from the problems of polysemy and synonymy. Over the years, people have often held the hypothesis that pattern (or phrase) based approaches should perform better than the term-based ones, but many experiments did not support this hypothesis. This paper presents an innovative technique, effective pattern discovery which includes the processes of pattern deploying and pattern evolving, to improve the effectiveness of using and updating discovered patterns for finding relevant and interesting information. Substantial experiments on RCV1 data collection and TREC topics demonstrate that the proposed solution achieves encouraging performance.
Resumo:
Many traffic situations require drivers to cross or merge into a stream having higher priority. Gap acceptance theory enables us to model such processes to analyse traffic operation. This discussion demonstrated that numerical search fine tuned by statistical analysis can be used to determine the most likely critical gap for a sample of drivers, based on their largest rejected gap and accepted gap. This method shares some common features with the Maximum Likelihood Estimation technique (Troutbeck 1992) but lends itself well to contemporary analysis tools such as spreadsheet and is particularly analytically transparent. This method is considered not to bias estimation of critical gap due to very small rejected gaps or very large rejected gaps. However, it requires a sufficiently large sample that there is reasonable representation of largest rejected gap/accepted gap pairs within a fairly narrow highest likelihood search band.
Resumo:
Performance comparisons between File Signatures and Inverted Files for text retrieval have previously shown several significant shortcomings of file signatures relative to inverted files. The inverted file approach underpins most state-of-the-art search engine algorithms, such as Language and Probabilistic models. It has been widely accepted that traditional file signatures are inferior alternatives to inverted files. This paper describes TopSig, a new approach to the construction of file signatures. Many advances in semantic hashing and dimensionality reduction have been made in recent times, but these were not so far linked to general purpose, signature file based, search engines. This paper introduces a different signature file approach that builds upon and extends these recent advances. We are able to demonstrate significant improvements in the performance of signature file based indexing and retrieval, performance that is comparable to that of state of the art inverted file based systems, including Language models and BM25. These findings suggest that file signatures offer a viable alternative to inverted files in suitable settings and positions the file signatures model in the class of Vector Space retrieval models.
Resumo:
This magazine, written by Melissa Giles, features three Brisbane-based media organisations: Radio 4RPH, Queensland Pride and 98.9FM. The PDF file on this website contains a text-only version of the magazine. Contact the author if you would like a copy of the text-only EPUB file or a copy of the full digital magazine with images. An audio version of the magazine is available at http://eprints.qut.edu.au/41729/
Resumo:
Since manually constructing domain-specific sentiment lexicons is extremely time consuming and it may not even be feasible for domains where linguistic expertise is not available. Research on the automatic construction of domain-specific sentiment lexicons has become a hot topic in recent years. The main contribution of this paper is the illustration of a novel semi-supervised learning method which exploits both term-to-term and document-to-term relations hidden in a corpus for the construction of domain specific sentiment lexicons. More specifically, the proposed two-pass pseudo labeling method combines shallow linguistic parsing and corpusbase statistical learning to make domain-specific sentiment extraction scalable with respect to the sheer volume of opinionated documents archived on the Internet these days. Another novelty of the proposed method is that it can utilize the readily available user-contributed labels of opinionated documents (e.g., the user ratings of product reviews) to bootstrap the performance of sentiment lexicon construction. Our experiments show that the proposed method can generate high quality domain-specific sentiment lexicons as directly assessed by human experts. Moreover, the system generated domain-specific sentiment lexicons can improve polarity prediction tasks at the document level by 2:18% when compared to other well-known baseline methods. Our research opens the door to the development of practical and scalable methods for domain-specific sentiment analysis.
Resumo:
In the present paper, we introduce BioPatML.NET, an application library for the Microsoft Windows .NET framework [2] that implements the BioPatML pattern definition language and sequence search engine. BioPatML.NET is integrated with the Microsoft Biology Foundation (MBF) application library [3], unifying the parsers and annotation services supported or emerging through MBF with the language, search framework and pattern repository of BioPatML. End users who wish to exploit the BioPatML.NET engine and repository without engaging the services of a programmer may do so via the freely accessible web-based BioPatML Editor, which we describe below.
Resumo:
Information has no value unless it is accessible. Information must be connected together so a knowledge network can then be built. Such a knowledge base is a key resource for Internet users to interlink information from documents. Information retrieval, a key technology for knowledge management, guarantees access to large corpora of unstructured text. Collaborative knowledge management systems such as Wikipedia are becoming more popular than ever; however, their link creation function is not optimized for discovering possible links in the collection and the quality of automatically generated links has never been quantified. This research begins with an evaluation forum which is intended to cope with the experiments of focused link discovery in a collaborative way as well as with the investigation of the link discovery application. The research focus was on the evaluation strategy: the evaluation framework proposal, including rules, formats, pooling, validation, assessment and evaluation has proved to be efficient, reusable for further extension and efficient for conducting evaluation. The collection-split approach is used to re-construct the Wikipedia collection into a split collection comprising single passage files. This split collection is proved to be feasible for improving relevant passages discovery and is devoted to being a corpus for focused link discovery. Following these experiments, a mobile client-side prototype built on iPhone is developed to resolve the mobile Search issue by using focused link discovery technology. According to the interview survey, the proposed mobile interactive UI does improve the experience of mobile information seeking. Based on this evaluation framework, a novel cross-language link discovery proposal using multiple text collections is developed. A dynamic evaluation approach is proposed to enhance both the collaborative effort and the interacting experience between submission and evaluation. A realistic evaluation scheme has been implemented at NTCIR for cross-language link discovery tasks.
Resumo:
Volatile properties of particle emissions from four compressed natural gas (CNG) and four diesel buses were investigated under steady state and transient driving modes on a chassis dynamometer. The exhaust was diluted utilising a full-flow continuous volume sampling system and passed through a thermodenuder at controlled temperature. Particle number concentration and size distribution were measured with a condensation particle counter and a scanning mobility particle sizer, respectively. We show that, while almost all the particles emitted by the CNG buses were in the nanoparticle size range, at least 85% and 98% were removed at 100ºC and 250ºC, respectively. Closer analysis of the volatility of particles emitted during transient cycles showed that volatilisation began at around 40°C with the majority occurring by 80°C. Particles produced during hard acceleration from rest exhibited lower volatility than that produced during other times of the cycle. Based on our results and the observation of ash deposits on the walls of the tailpipes, we suggest that these non-volatile particles were composed mostly of ash from lubricating oil. Heating the diesel bus emissions to 100ºC removed ultrafine particle numbers by 69% to 82% when a nucleation mode was present and just 18% when it was not.
Resumo:
The growing importance and need of data processing for information extraction is vital for Web databases. Due to the sheer size and volume of databases, retrieval of relevant information as needed by users has become a cumbersome process. Information seekers are faced by information overloading - too many result sets are returned for their queries. Moreover, too few or no results are returned if a specific query is asked. This paper proposes a ranking algorithm that gives higher preference to a user’s current search and also utilizes profile information in order to obtain the relevant results for a user’s query.