128 resultados para Chlamydia trachomatis
Resumo:
Objectives Directly measuring disease incidence in a population is difficult and not feasible to do routinely. We describe the development and application of a new method of estimating at a population level the number of incident genital chlamydia infections, and the corresponding incidence rates, by age and sex using routine surveillance data. Methods A Bayesian statistical approach was developed to calibrate the parameters of a decision-pathway tree against national data on numbers of notifications and tests conducted (2001-2013). Independent beta probability density functions were adopted for priors on the time-independent parameters; the shape parameters of these beta distributions were chosen to match prior estimates sourced from peer-reviewed literature or expert opinion. To best facilitate the calibration, multivariate Gaussian priors on (the logistic transforms of) the time-dependent parameters were adopted, using the Matérn covariance function to favour changes over consecutive years and across adjacent age cohorts. The model outcomes were validated by comparing them with other independent empirical epidemiological measures i.e. prevalence and incidence as reported by other studies. Results Model-based estimates suggest that the total number of people acquiring chlamydia per year in Australia has increased by ~120% over 12 years. Nationally, an estimated 356,000 people acquired chlamydia in 2013, which is 4.3 times the number of reported diagnoses. This corresponded to a chlamydia annual incidence estimate of 1.54% in 2013, increased from 0.81% in 2001 (~90% increase). Conclusions We developed a statistical method which uses routine surveillance (notifications and testing) data to produce estimates of the extent and trends in chlamydia incidence.
Resumo:
This thesis has made a significant contribution to future chlamydial research by uncovering the chlamydial pathogenic mechanisms which will potentially help in the development of targeted vaccine against the pathogen. This thesis has made important new contributions to our understanding of Chlamydia pneumoniae specific adaptations to stress responses and has provided new perspectives on the survival of this successful pathogen. This thesis has used two well established microbial stressors and has identified major differences in stress responses between human and animal Chlamydia pneumoniae isolates.
Resumo:
Background Despite its global recognition as a ruminant pathogen, cases of Chlamydia pecorum infection in Australian livestock are poorly documented. In this report, a C. pecorum specific Multi Locus Sequence Analysis scheme was used to characterise the C. pecorum strains implicated in two cases of sporadic bovine encephalomyelitis confirmed by necropsy, histopathology and immunohistochemistry. This report provides the first molecular evidence for the presence of mixed infections of C. pecorum strains in Australian cattle. Case presentation Affected animals were two markedly depressed, dehydrated and blind calves, 12 and 16 weeks old. The calves were euthanized and necropsied. In one calf, a severe fibrinous polyserositis was noted with excess joint fluid in all joints whereas in the other, no significant lesions were seen. No gross abnormalities were noted in the brain of either calf. Histopathological lesions seen in both calves included: multifocal, severe, subacute meningoencephalitis with vasculitis, fibrinocellular thrombosis and malacia; diffuse, mild, acute interstitial pneumonia; and diffuse, subacute epicarditis, severe in the calf with gross serositis. Immunohistochemical labelling of chlamydial antigen in brain, spleen and lung from the two affected calves and brain from two archived cases, localised the antigen to the cytoplasm of endothelium, mesothelium and macrophages. C. pecorum specific qPCR, showed dissemination of the pathogen to multiple organs. Phylogenetic comparisons with other C. pecorum bovine strains from Australia, Europe and the USA revealed the presence of two genetically distinct sequence types (ST). The predominant ST detected in the brain, heart, lung and liver of both calves was identical to the C. pecorum ST previously described in cases of SBE. A second ST detected in an ileal tissue sample from one of the calves, clustered with previously typed faecal bovine isolates. Conclusion This report provides the first data to suggest that identical C. pecorum STs may be associated with SBE in geographically separated countries and that these may be distinct from those found in the gastrointestinal tract. This report provides a platform for further investigations into SBE and for understanding the genetic relationships that exist between C. pecorum strains detected in association with other infectious diseases in livestock.
Resumo:
Chlamydia pecorum is globally associated with several ovine diseases including keratoconjunctivitis and polyarthritis. The exact relationship between the variety of C. pecorum strains reported and the diseases described in sheep remains unclear, challenging efforts to accurately diagnose and manage infected flocks. In the present study, we applied C. pecorum multi-locus sequence typing (MLST) to C. pecorum positive samples collected from sympatric flocks of Australian sheep presenting with conjunctivitis, conjunctivitis with polyarthritis, or polyarthritis only and with no clinical disease (NCD) in order to elucidate the exact relationships between the infecting strains and the range of diseases. Using Bayesian phylogenetic and cluster analyses on 62 C. pecorum positive ocular, vaginal and rectal swab samples from sheep presenting with a range of diseases and in a comparison to C. pecorum sequence types (STs) from other hosts, one ST (ST 23) was recognised as a globally distributed strain associated with ovine and bovine diseases such as polyarthritis and encephalomyelitis. A second ST (ST 69) presently only described in Australian animals, was detected in association with ovine as well as koala chlamydial infections. The majority of vaginal and rectal C. pecorum STs from animals with NCD and/or anatomical sites with no clinical signs of disease in diseased animals, clustered together in a separate group, by both analyses. Furthermore, 8/13 detected STs were novel. This study provides a platform for strain selection for further research into the pathogenic potential of C. pecorum in animals and highlights targets for potential strain-specific diagnostic test development.
Resumo:
BACKGROUND Many koala populations around Australia are in serious decline, with a substantial component of this decline in some Southeast Queensland populations attributed to the impact of Chlamydia. A Chlamydia vaccine for koalas is in development and has shown promise in early trials. This study contributes to implementation preparedness by simulating vaccination strategies designed to reverse population decline and by identifying which age and sex category it would be most effective to target. METHODS We used field data to inform the development and parameterisation of an individual-based stochastic simulation model of a koala population endemic with Chlamydia. The model took into account transmission, morbidity and mortality caused by Chlamydia infections. We calibrated the model to characteristics of typical Southeast Queensland koala populations. As there is uncertainty about the effectiveness of the vaccine in real-world settings, a variety of potential vaccine efficacies, half-lives and dosing schedules were simulated. RESULTS Assuming other threats remain constant, it is expected that current population declines could be reversed in around 5-6 years if female koalas aged 1-2 years are targeted, average vaccine protective efficacy is 75%, and vaccine coverage is around 10% per year. At lower vaccine efficacies the immunological effects of boosting become important: at 45% vaccine efficacy population decline is predicted to reverse in 6 years under optimistic boosting assumptions but in 9 years under pessimistic boosting assumptions. Terminating a successful vaccination programme at 5 years would lead to a rise in Chlamydia prevalence towards pre-vaccination levels. CONCLUSION For a range of vaccine efficacy levels it is projected that population decline due to endemic Chlamydia can be reversed under realistic dosing schedules, potentially in just 5 years. However, a vaccination programme might need to continue indefinitely in order to maintain Chlamydia prevalence at a sufficiently low level for population growth to continue.
Resumo:
Chlamydia pneumoniae is a ubiquitous intracellular pathogen, first associated with human respiratory disease and subsequently detected in a range of mammals, amphibians, and reptiles. Here we report the draft genome sequence for strain B21 of C. pneumoniae, isolated from the endangered Australian marsupial the western barred bandicoot.
Resumo:
Chlamydia pneumoniae is an obligate intracellular bacterium implicated in a wide range of human diseases including atherosclerosis and Alzheimer's disease. Efforts to understand the relationships between C. pneumoniae detected in these diseases have been hindered by the availability of sequence data for non-respiratory strains. In this study, we sequenced the whole genomes for C. pneumoniae isolates from atherosclerosis and Alzheimer's disease, and compared these to previously published C. pneumoniae genomes. Phylogenetic analyses of these new C. pneumoniae strains indicate two sub-groups within human C. pneumoniae, and suggest that both recombination and mutation events have driven the evolution of human C. pneumoniae. Further fine-detailed analyses of these new C. pneumoniae sequences show several genetically variable loci. This suggests that similar strains of C. pneumoniae are found in the brain, lungs and cardiovascular system and that only minor genetic differences may contribute to the adaptation of particular strains in human disease.
Resumo:
Background The obligate intracellular bacterium Chlamydia pneumoniae is a common respiratory pathogen, which has been found in a range of hosts including humans, marsupials and amphibians. Whole genome comparisons of human C. pneumoniae have previously highlighted a highly conserved nucleotide sequence, with minor but key polymorphisms and additional coding capacity when human and animal strains are compared. Results In this study, we sequenced three Australian human C. pneumoniae strains, two of which were isolated from patients in remote indigenous communities, and compared them to all available C. pneumoniae genomes. Our study demonstrated a phylogenetically distinct human C. pneumoniae clade containing the two indigenous Australian strains, with estimates that the most recent common ancestor of these strains predates the arrival of European settlers to Australia. We describe several polymorphisms characteristic to these strains, some of which are similar in sequence to animal C. pneumoniae strains, as well as evidence to suggest that several recombination events have shaped these distinct strains. Conclusions Our study reveals a greater sequence diversity amongst both human and animal C. pneumoniae strains, and suggests that a wider range of strains may be circulating in the human population than current sampling indicates.
Resumo:
The development of chlamydial vaccines continues to be a major challenge for researchers. While acute infections are the main target of vaccine development groups, Chlamydia is well known for its ability to establish chronic or persistent infections in its host. To date, little effort has focussed specifically on the challenges of vaccines to successfully combat the chronic or persistent phase of the disease and yet this will be a necessary aspect of any fully successful chlamydial vaccine. This short review specifically examines the phenomenon of chlamydial persistence and the unique challenges that this brings to vaccine development.
Resumo:
Proteases with important roles for bacterial pathogens which specifically reside within intracellular vacuoles are frequently homologous to those which have important virulence functions for other bacteria. Research has identified that some of these conserved proteases have evolved specialised functions for intracellular vacuole residing bacteria. Unique proteases with pathogenic functions have also been described from Chlamydia, Mycobacteria, and Legionella. These findings suggest that there are further novel functions for proteases from these bacteria which remain to be described. This review summarises recent findings of novel protease functions from the intracellular human pathogenic bacteria which reside exclusively in vacuoles.
Resumo:
We present a spatiotemporal mathematical model of chlamydial infection, host immune response and spatial movement of infectious particles. The re- sulting partial differential equations model both the dynamics of the infection and changes in infection profile observed spatially along the length of the host genital tract. This model advances previous chlamydia modelling by incorporating spatial change, which we also demonstrate to be essential when the timescale for movement of infectious particles is equal to, or shorter than, the developmental cycle timescale. Numerical solutions and model analysis are carried out, and we present a hypothesis regarding the potential for treatment and prevention of infection by increasing chlamydial particle motility.
Resumo:
There is an urgent need to develop safe, effective, dual-purpose contraceptive agents that combine the prevention of pregnancy with protection against sexually transmitted diseases. Here we report the identification of a group of compounds that on contact with human spermatozoa induce a state of “spermostasis,” characterized by the extremely rapid inhibition of sperm movement without compromising cell viability. These spermostatic agents were more active and significantly less toxic than the reagent in current clinical use, nonoxynol 9, giving therapeutic indices (ratio of spermostatic to cytotoxic activity) that were orders of magnitude greater than this traditional spermicide. Although certain compounds could trigger reactive oxygen species generation by spermatozoa, this activity was not correlated with spermostasis. Rather, the latter was associated with alkylation of two major sperm tail proteins that were identified as A Kinase-Anchoring Proteins (AKAP3 and AKAP4) by mass spectrometry. As a consequence of disrupted AKAP function, the abilities of cAMP to drive protein kinase A-dependent activities in the sperm tail, such as the activation of SRC and the consequent stimulation of tyrosine phosphorylation, were suppressed. Furthermore, analysis of microbicidal activity using Chlamydia muridarum revealed powerful inhibitory effects at the same low micromolar doses that suppressed sperm movement. In this case, the microbicidal action was associated with alkylation of Major Outer Membrane Protein (MOMP), a major chlamydial membrane protein. Taken together, these results have identified for the first time a novel set of cellular targets and chemical principles capable of providing simultaneous defense against both fertility and the spread of sexually transmitted disease.