98 resultados para Cascade mountains
Resumo:
During post-disaster recovery, an infrastructure system may be subject to a number of disturbances originating from several other interdependent infrastructures. These disturbances might result in a series of system failures, thereby having immediate impact on societal living conditions. The inability to detect signs of disturbance from one infrastructure during recovery might cause significant disruptive effects on other infrastructure via the interconnection that exist among them. In such circumstances, it clearly appears that critical infrastructures' interdependencies affect the recovery of each individual infrastructure, as well as those of other interdependent infrastructure systems. This is why infrastructure resilience needs to be improved in function of those interdependencies, particularly during the recovery period to avoid the occurrence of a ‘disaster of disaster’ scenario. Viewed from this perspective, resilience is achieved through an inter-organisational collaboration between the different organisations involved in the reconstruction of interdependent infrastructure systems. This paper suggests that to some extent, the existing degree of interconnectedness between these infrastructure systems can also be found in their resilience ability during post-disaster recovery. For instance, without a resilient energy system, a large-scale power outage could affect simultaneously all the interdependent infrastructures after a disaster. Thus, breaking down the silos of resilience would be the first step in minimizing the risks of disaster failures from one infrastructure to cascade or escalate to other interconnected systems.
Resumo:
In the prospect of limited energy resources and climate change, effects of alternative biofuels on primary emissions are being extensively studied. Our two recent studies have shown that biodiesel fuel composition has a significant impact on primary particulate matter emissions. It was also shown that particulate matter caused by biodiesels was substantially different from the emissions due to petroleum diesel. Emissions appeared to have higher oxidative potential with the increase in oxygen content and decrease of carbon chain length and unsaturation levels of fuel molecules. Overall, both studies concluded that chemical composition of biodiesel is more important than its physical properties in controlling exhaust particle emissions. This suggests that the atmospheric aging processes, including secondary organic aerosol formation, of emissions from different fuels will be different as well. In this study, measurements were conducted on a modern common-rail diesel engine. To get more information on realistic properties of tested biodiesel particulate matter once they are released into the atmosphere, particulate matter was exposed to atmospheric oxidants, ozone and ultra-violet light; and the change in their properties was monitored for different biodiesel blends. Upon the exposure to oxidative agents, the chemical composition of the exhaust changes. It triggers the cascade of photochemical reactions resulting in the partitioning of semi-volatile compounds between the gas and particulate phase. In most of the cases, aging lead to the increase in volatility and oxidative potential, and the increment of change was mainly dependent on the chemical composition of fuels as the leading cause for the amount and the type of semi-volatile compounds present in the exhaust.
Resumo:
Climbing Mountains, Building Bridges is a rich theme for exploring some of the “challenges, obstacles, links, and connections” facing mathematics education within the current STEM climate (Science, Technology, Engineering and Mathematics). This paper first considers some of the issues and debates surrounding the nature of STEM education, including perspectives on its interdisciplinary nature. It is next argued that mathematics is in danger of being overshadowed, in particular by science, in the global urgency to advance STEM competencies in schools and the workforce. Some suggestions are offered for lifting the profile of mathematics education within an integrated STEM context, with examples drawn from modelling with data in the sixth grade.
Resumo:
This poem is in response to the Call for Submissions for a themed edition of the About Place Journal titled ‘Enlightened Visions in the Wake of Trauma’, which focused on Indigenous, marginalized, and small island peoples in addressing global warming.
Resumo:
The multifractal properties of daily rainfall time series at the stations in Pearl River basin of China over periods of up to 45 years are examined using the universal multifractal approach based on the multiplicative cascade model and the multifractal detrended fluctuation analysis (MF-DFA). The results from these two kinds of multifractal analyses show that the daily rainfall time series in this basin have multifractal behavior in two different time scale ranges. It is found that the empirical multifractal moment function K(q)K(q) of the daily rainfall time series can be fitted very well by the universal multifractal model (UMM). The estimated values of the conservation parameter HH from UMM for these daily rainfall data are close to zero indicating that they correspond to conserved fields. After removing the seasonal trend in the rainfall data, the estimated values of the exponent h(2)h(2) from MF-DFA indicate that the daily rainfall time series in Pearl River basin exhibit no long-term correlations. It is also found that K(2)K(2) and elevation series are negatively correlated. It shows a relationship between topography and rainfall variability.
Resumo:
Periodontal inflammation can inhibit cell differentiation of periodontal ligament cells (PDLCs), resulting in decreased bone/cementum regeneration ability. The Wnt signaling pathway, including canonical Wnt/β-catenin signaling and noncanonical Wnt/Ca2+ signaling, plays essential roles in cell proliferation and differentiation during tooth development. However, little is still known whether noncanonical Wnt/Ca2+ signaling cascade could regulate cementogenic/osteogenic differentiation capability of PDLCs within an inflammatory environment. Therefore, in this study, human PDLCs (hPDLCs) and their cementogenic differentiation potential were investigated in the presence of cytokines. The data demonstrated that both cytokines interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) inhibited cell proliferation, relative alkaline phosphatase activity, bone/cementum-related gene/protein expression, and canonical Wnt pathway-related gene/protein expression in hPDLCs. Interestingly, both cytokines upregulated the noncanonical Wnt/Ca2+ signaling-related gene and protein expression in hPDLCs. When the Wnt/Ca2+ pathway was blocked by Ca2+/calmodulin-dependent protein kinase II inhibitor KN93, even in the presence of IL-6 and TNF-α, cementogenesis could be stimulated in hPDLCs. Our data indicate that the Wnt/Ca2+ pathway plays an inhibitory role on PDLC cementogenic differentiation in inflammatory microenvironments. Therefore, targeting the Wnt/Ca2+ pathway may provide a novel therapeutic approach to improve periodontal regeneration for periodontal diseases.
Resumo:
Ensuring adequate water supply to urban areas is a challenging task due to factors such as rapid urban growth, increasing water demand and climate change. In developing a sustainable water supply system, it is important to identify the dominant water demand factors for any given water supply scheme. This paper applies principal components analysis to identify the factors that dominate residential water demand using the Blue Mountains Water Supply System in Australia as a case study. The results show that the influence of community intervention factors (e.g. use of water efficient appliances and rainwater tanks) on water demand are among the most significant. The result also confirmed that the community intervention programmes and water pricing policy together can play a noticeable role in reducing the overall water demand. On the other hand, the influence of rainfall on water demand is found to be very limited, while temperature shows some degree of correlation with water demand. The results of this study would help water authorities to plan for effective water demand management strategies and to develop a water demand forecasting model with appropriate climatic factors to achieve sustainable water resources management. The methodology developed in this paper can be adapted to other water supply systems to identify the influential factors in water demand modelling and to devise an effective demand management strategy.
Resumo:
There is a growing interest to autonomously collect or manipulate objects in remote or unknown environments, such as mountains, gullies, bush-land, or rough terrain. There are several limitations of conventional methods using manned or remotely controlled aircraft. The capability of small Unmanned Aerial Vehicles (UAV) used in parallel with robotic manipulators could overcome some of these limitations. By enabling the autonomous exploration of both naturally hazardous environments, or areas which are biologically, chemically, or radioactively contaminated, it is possible to collect samples and data from such environments without directly exposing personnel to such risks. This paper covers the design, integration, and initial testing of a framework for outdoor mobile manipulation UAV. The framework is designed to allow further integration and testing of complex control theories, with the capability to operate outdoors in unknown environments. The results obtained act as a reference for the effectiveness of the integrated sensors and low-level control methods used for the preliminary testing, as well as identifying the key technologies needed for the development of an outdoor capable system.