104 resultados para Boundary layers
Resumo:
This paper describes our participation in the Chinese word segmentation task of CIPS-SIGHAN 2010. We implemented an n-gram mutual information (NGMI) based segmentation algorithm with the mixed-up features from unsupervised, supervised and dictionarybased segmentation methods. This algorithm is also combined with a simple strategy for out-of-vocabulary (OOV) word recognition. The evaluation for both open and closed training shows encouraging results of our system. The results for OOV word recognition in closed training evaluation were however found unsatisfactory.
Resumo:
This thesis presents a promising boundary setting method for solving challenging issues in text classification to produce an effective text classifier. A classifier must identify boundary between classes optimally. However, after the features are selected, the boundary is still unclear with regard to mixed positive and negative documents. A classifier combination method to boost effectiveness of the classification model is also presented. The experiments carried out in the study demonstrate that the proposed classifier is promising.
Resumo:
Over the past decades, universities have increasingly become ambidextrous organizations reconciling scientific and commercial missions. In order to manage this ambidexterity, technology transfer offices (TTOs) were established in most universities. This paper studies a specific, often implemented, but rather understudied type of TTO, namely a hybrid TTO model uniting centralized and decentralized levels. Employing a qualitative research design, we examine how and why the two TTO levels engage in diverse boundary spanning activities to help nascent spin-off companies move through the pre-spin-off process. Our research identifies differences in the types of boundary spanning activities that centralized and decentralized TTOs perform and in the parties they engage with. We find geographical, technological and organizational proximity to be important antecedents of the TTOs’ engagement in external and internal boundary spanning activities. These results have important implications for both academics and practitioners interested in university technology transfer through spin-off creation.
Resumo:
Industry-school partnerships (ISPs) are increasingly being recognised as a new way of providing vocational education opportunities. However, there is limited research investigating their impact on systemic (organisational and structural) and human resource (teachers and education managers) capacity to support school to work transitions. This paper reports on a government led ISP, established by the Queensland state government. ISPs across three industry sectors: minerals and energy; building and construction; and aviation are included in this study. This research adopted a qualitative case study methodology and draws upon boundary crossing theory to understand the dynamics of how each industry sector responded to systemic and human resource issues that emerged in each ISP. The main finding being that the systematic application of boundary crossing mechanisms by all partners pro-duced mutually beneficial outcomes. ISPs from the three sectors adopted different models, leveraged different boundary crossing objects but all maintained the joint vision and mutually agreed outcomes. All three ISPs genuinely crossed boundaries, albeit in different ways, and assisted teachers to co-pro-duce industry-based curriculums, share sector specific knowledge and skills that help enhance the school to work transition for school graduates.
Resumo:
In this article, natural convection boundary layer flow is investigated over a semi-infinite horizontal wavy surface. Such an irregular (wavy) surface is used to exchange heat with an external radiating fluid which obeys Rosseland diffusion approximation. The boundary layer equations are cast into dimensionless form by introducing appropriate scaling. Primitive variable formulations (PVF) and stream function formulations (SFF) are independently used to transform the boundary layer equations into convenient form. The equations obtained from the former formulations are integrated numerically via implicit finite difference iterative scheme whereas equations obtained from lateral formulations are simulated through Keller-box scheme. To validate the results, solutions produced by above two methods are compared graphically. The main parameters: thermal radiation parameter and amplitude of the wavy surface are discussed categorically in terms of shear stress and rate of heat transfer. It is found that wavy surface increases heat transfer rate compared to the smooth wall. Thus optimum heat transfer is accomplished when irregular surface is considered. It is also established that high amplitude of the wavy surface in the boundary layer leads to separation of fluid from the plate.
Resumo:
Atherosclerotic plaque rupture has been extensively considered as the leading cause of death in western countries. It is believed that high stresses within plaque can be an important factor on triggering the rupture of the plaque. Stress analysis in the coronary and carotid arteries with plaque have been developed by many researchers from 2D to 3-D models, from structure analysis only to the Fluid-Structure Interaction (FSI) models[1].
Resumo:
With the rapid development of various technologies and applications in smart grid implementation, demand response has attracted growing research interests because of its potentials in enhancing power grid reliability with reduced system operation costs. This paper presents a new demand response model with elastic economic dispatch in a locational marginal pricing market. It models system economic dispatch as a feedback control process, and introduces a flexible and adjustable load cost as a controlled signal to adjust demand response. Compared with the conventional “one time use” static load dispatch model, this dynamic feedback demand response model may adjust the load to a desired level in a finite number of time steps and a proof of convergence is provided. In addition, Monte Carlo simulation and boundary calculation using interval mathematics are applied for describing uncertainty of end-user's response to an independent system operator's expected dispatch. A numerical analysis based on the modified Pennsylvania-Jersey-Maryland power pool five-bus system is introduced for simulation and the results verify the effectiveness of the proposed model. System operators may use the proposed model to obtain insights in demand response processes for their decision-making regarding system load levels and operation conditions.
Resumo:
The concept of focus on opportunities describes how many new goals, options, and possibilities employees believe to have in their personal future at work. In this multi-sample, multi-method study, the authors investigated relationships between focus on opportunities and general and daily work engagement and the moderating role of focus on opportunities on between- and within-person relationships between job control and work engagement. Based on a social cognitive theory framework on the motivating potential of a future temporal focus, it was hypothesized that focus on opportunities is positively related to work engagement. Further, consistent with the notion of compensatory resources, it was expected that job control is not related to work engagement among employees with a high focus on opportunities, whereas job control, as an external resource of the work environment, is positively related to work engagement among employees with a low focus on opportunities. Both a cross-sectional survey study (N=174) and a daily diary study (N=64) supported the hypotheses. The study contributes to research on the job demands-resources model as it emphasizes the role of focus on opportunities as a motivational factor in the relationship between job control and work engagement.
Resumo:
As business environments become even more competitive, project teams are required to make an effort to operate external linkages from within an organization or across organizational boundaries. Nevertheless, some members boundary-span less extensively, isolating themselves and their project teams from external environments. Our study examines why some members boundary-span more or less through the framework of group attachment theory. Data from 521 project-team members in construction and engineering industries revealed that the more individuals worry about their project team’s acceptance (group attachment anxiety), the more likely they are to perceive intergroup competition, and thus put more efforts into operating external linkages and resources to help their own teams outperform competitors. In contrast, a tendency to distrust their project teams (group attachment avoidance) generates members’ negative construal of their team’s external image, and thus fewer efforts are made at operating external linkages. Thus, project leaders and members with high group-attachment-anxiety may be best qualified for external tasks.
Resumo:
A computer code is developed for the numerical prediction of natural convection in rectangular two-dimensional cavities at high Rayleigh numbers. The governing equations are retained in the primitive variable form. The numerical method is based on finite differences and an ADI scheme. Convective terms may be approximated with either central or hybrid differencing for greater stability. A non-uniform grid distribution is possible for greater efficiency. The pressure is dealt with via a SIMPLE type algorithm and the use of a fast elliptic solver for the solenoidal velocity correction field significantly reduces computing times. Preliminary results indicate that the code is reasonably accurate, robust and fast compared with existing benchmarks and finite difference based codes, particularly at high Rayleigh numbers. Extension to three-dimensional problems and turbulence studies in similar geometries is readily possible and indicated.
Resumo:
Numerical predictions are obtained for laminar natural convection of air in a square two dimensional cavity at high Rayleigh numbers. Proper resolution of the core reveals weak multi-cellular structure which varies in a complex manner as the effects of convection are increased. The end of the steady laminar regime is numerically estimated to occur at Ra=2.2x10^8.
Resumo:
A novel sintering additive based on LiNO3 was used to overcome the drawbacks of poor sinterability and low grain boundary conductivity in BaZr0.8Y0.2O3-δ (BZY20) protonic conductors. The Li-additive totally evaporated during the sintering process at 1600°C for 6 h, which led to highly dense BZY20 pellets (96.5% of the theoretical value). The proton conductivity values of BZY20 with Li sintering-aid were significantly larger than the values reported for BZY sintered with other metal oxides, due to the fast proton transport in the "clean" grain boundaries and grain interior. The total conductivity of BZY20-Li in wet Ar was 4.45 × 10-3 S cm-1 at 600°C. Based on the improved sinterability, anode-supported fuel cells with 25 μm-thick BZY20-Li electrolyte membranes were fabricated by a co-firing technique. The peak power density obtained at 700°C for a BZY-Ni/BZY20-Li/La0.6Sr0.4Co0.2Fe 0.8O3-δ (LSCF)-BZY cell was 53 mW cm-2, which is significantly larger than the values reported for fuel cells using electrolytes made of BZY sintered with the addition of ZnO and CuO, confirming the advantage of using Li as a sintering aid.
Resumo:
Birds represent the most diverse extant tetrapod clade, with ca. 10,000 extant species, and the timing of the crown avian radiation remains hotly debated. The fossil record supports a primarily Cenozoic radiation of crown birds, whereas molecular divergence dating analyses generally imply that this radiation was well underway during the Cretaceous. Furthermore, substantial differences have been noted between published divergence estimates. These have been variously attributed to clock model, calibration regime, and gene type. One underappreciated phenomenon is that disparity between fossil ages and molecular dates tends to be proportionally greater for shallower nodes in the avian Tree of Life. Here, we explore potential drivers of disparity in avian divergence dates through a set of analyses applying various calibration strategies and coding methods to a mitochondrial genome dataset and an 18-gene nuclear dataset, both sampled across 72 taxa. Our analyses support the occurrence of two deep divergences (i.e., the Palaeognathae/Neognathae split and the Galloanserae/Neoaves split) well within the Cretaceous, followed by a rapid radiation of Neoaves near the K-Pg boundary. However, 95% highest posterior density intervals for most basal divergences in Neoaves cross the boundary, and we emphasize that, barring unreasonably strict prior distributions, distinguishing between a rapid Early Paleocene radiation and a Late Cretaceous radiation may be beyond the resolving power of currently favored divergence dating methods. In contrast to recent observations for placental mammals, constraining all divergences within Neoaves to occur in the Cenozoic does not result in unreasonably high inferred substitution rates. Comparisons of nuclear DNA (nDNA) versus mitochondrial DNA (mtDNA) datasets and NT- versus RY-coded mitochondrial data reveal patterns of disparity that are consistent with substitution model misspecifications that result in tree compression/tree extension artifacts, which may explain some discordance between previous divergence estimates based on different sequence types. Comparisons of fully calibrated and nominally calibrated trees support a correlation between body mass and apparent dating error. Overall, our results are consistent with (but do not require) a Paleogene radiation for most major clades of crown birds.
Resumo:
The evolutionary success of beetles and numerous other terrestrial insects is generally attributed to co-radiation with flowering plants but most studies have focused on herbivorous or pollinating insects. Non-herbivores represent a significant proportion of beetle diversity yet potential factors that influence their diversification have been largely unexamined. In the present study, we examine the factors driving diversification within the Scarabaeidae, a speciose beetle family with a range of both herbivorous and non-herbivorous ecologies. In particular, it has been long debated whether the key event in the evolution of dung beetles (Scarabaeidae: Scarabaeinae) was an adaptation to feeding on dinosaur or mammalian dung. Here we present molecular evidence to show that the origin of dung beetles occurred in the middle of the Cretaceous, likely in association with dinosaur dung, but more surprisingly the timing is consistent with the rise of the angiosperms. We hypothesize that the switch in dinosaur diet to incorporate more nutritious and less fibrous angiosperm foliage provided a palatable dung source that ultimately created a new niche for diversification. Given the well-accepted mass extinction of non-avian dinosaurs at the Cretaceous-Paleogene boundary, we examine a potential co-extinction of dung beetles due to the loss of an important evolutionary resource, i.e., dinosaur dung. The biogeography of dung beetles is also examined to explore the previously proposed "out of Africa" hypothesis. Given the inferred age of Scarabaeinae as originating in the Lower Cretaceous, the major radiation of dung feeders prior to the Cenomanian, and the early divergence of both African and Gondwanan lineages, we hypothesise that that faunal exchange between Africa and Gondwanaland occurred during the earliest evolution of the Scarabaeinae. Therefore we propose that both Gondwanan vicariance and dispersal of African lineages is responsible for present day distribution of scarabaeine dung beetles and provide examples.