113 resultados para Bion, of Phlossa near Smyrna.
Resumo:
Combustion sources are well-known sources of electrical ions (Howard, J.B. et al. 1973). Motor vehicles emissions are one of the main sources of ions in urban environments. The presence of charged particles in motor vehicle emissions has been known for many years (Kittelson, 1986; Yu et al, 2004; Jung and Kittelson, 2005). Although these particles are probably charged by the attachment of air ions, there is very little information on the nature, sign and magnitude of the small ions (diameter < 1.6 nm) emitted by motor vehicles and/or present by the sides of roads.
Resumo:
PURPOSE The purpose of this study was to demonstrate the potential of near infrared (NIR) spectroscopy for characterizing the health and degenerative state of articular cartilage based on the components of the Mankin score. METHODS Three models of osteoarthritic degeneration induced in laboratory rats by anterior cruciate ligament (ACL) transection, meniscectomy (MSX), and intra-articular injection of monoiodoacetate (1 mg) (MIA) were used in this study. Degeneration was induced in the right knee joint; each model group consisted of 12 rats (N = 36). After 8 weeks, the animals were euthanized and knee joints were collected. A custom-made diffuse reflectance NIR probe of 5-mm diameter was placed on the tibial and femoral surfaces, and spectral data were acquired from each specimen in the wave number range of 4,000 to 12,500 cm(-1). After spectral data acquisition, the specimens were fixed and safranin O staining (SOS) was performed to assess disease severity based on the Mankin scoring system. Using multivariate statistical analysis, with spectral preprocessing and wavelength selection technique, the spectral data were then correlated to the structural integrity (SI), cellularity (CEL), and matrix staining (SOS) components of the Mankin score for all the samples tested. RESULTS ACL models showed mild cartilage degeneration, MSX models had moderate degeneration, and MIA models showed severe cartilage degenerative changes both morphologically and histologically. Our results reveal significant linear correlations between the NIR absorption spectra and SI (R(2) = 94.78%), CEL (R(2) = 88.03%), and SOS (R(2) = 96.39%) parameters of all samples in the models. In addition, clustering of the samples according to their level of degeneration, with respect to the Mankin components, was also observed. CONCLUSIONS NIR spectroscopic probing of articular cartilage can potentially provide critical information about the health of articular cartilage matrix in early and advanced stages of osteoarthritis (OA). CLINICAL RELEVANCE This rapid nondestructive method can facilitate clinical appraisal of articular cartilage integrity during arthroscopic surgery.
Resumo:
Diagnosis of articular cartilage pathology in the early disease stages using current clinical diagnostic imaging modalities is challenging, particularly because there is often no visible change in the tissue surface and matrix content, such as proteoglycans (PG). In this study, we propose the use of near infrared (NIR) spectroscopy to spatially map PG content in articular cartilage. The relationship between NIR spectra and reference data (PG content) obtained from histology of normal and artificially induced PG-depleted cartilage samples was investigated using principal component (PC) and partial least squares (PLS) regression analyses. Significant correlation was obtained between both data (R2 = 91.40%, p<0.0001). The resulting correlation was used to predict PG content from spectra acquired from whole joint sample, this was then employed to spatially map this component of cartilage across the intact sample. We conclude that NIR spectroscopy is a feasible tool for evaluating cartilage contents and mapping their distribution across mammalian joint
Resumo:
With the increasing need to adapt to new environments, data-driven approaches have been developed to estimate terrain traversability by learning the rover’s response on the terrain based on experience. Multiple learning inputs are often used to adequately describe the various aspects of terrain traversability. In a complex learning framework, it can be difficult to identify the relevance of each learning input to the resulting estimate. This paper addresses the suitability of each learning input by systematically analyzing the impact of each input on the estimate. Sensitivity Analysis (SA) methods provide a means to measure the contribution of each learning input to the estimate variability. Using a variance-based SA method, we characterize how the prediction changes as one or more of the input changes, and also quantify the prediction uncertainty as attributed from each of the inputs in the framework of dependent inputs. We propose an approach built on Analysis of Variance (ANOVA) decomposition to examine the prediction made in a near-to-far learning framework based on multi-task GP regression. We demonstrate the approach by analyzing the impact of driving speed and terrain geometry on the prediction of the rover’s attitude and chassis configuration in a Marsanalogue terrain using our prototype rover Mawson.
Resumo:
The intercalation of an anionic surfactant, sodium dodecylsulfate (SDS), into hydrocalumite (CaAl-LDH-Cl) was investigated in this study. To understand the intercalation behavior, X-ray diffraction (XRD), mid-infrared spectroscopy (MIR), near-infrared spectroscopy (NIR) and scanning electron microscopy (SEM) were undertaken. The near-infrared spectra indicated a special spectral range from 6000 to 5600cm-1and prominent bands of CaAl-LDH-Cl intercalated with SDS around 8388cm-1. This band was assigned to the second overtone of the first fundamental of CH stretching vibrations of SDS, and it could be used to determinate the result of CaAl-LDH-Cl modified by SDS. Moreover, the results revealed that different adsorption behaviors were observed at different (high and low) concentrations of SDS. When the SDS concentration was around 0.2molL-1, anion exchange intercalation occurred and the interlayer distance expanded to about 3.25nm. When SDS concentration was 0.005molL-1, the surface adsorption of DS- was the major anion exchange event.
Resumo:
Marble from the Chillagoe deposits was extensively used in the construction of Australia’s parliament house. Near infrared (NIR) spectroscopy has been applied to study the quality of marble from the Chillagoe marble deposits and to distinguish between different types of marble in the Chillagoe deposits. A comparison of the NIR spectra of marble with dolomite and monohydrocalcite is made. The spectrum of the marble closely resembles that of monohydrocalcite and is different from that of dolomite. The infrared spectra of the minerals are characterised by OH and water stretching vibrations. Both the first and second fundamental overtones of these bands are observed in the NIR spectra. Marble is characterised by NIR bands at 4005, 4268 and 4340 cm–1, attributed to carbonate combination bands and overtones. Marble also shows NIR bands at 5005, 5106, 5234 and 5334 cm–1 assigned to water combination bands. Finally the NIR spectrum of the marble displays broad low-intensity features centred upon 6905 cm–1 attributed to the water first overtones. It appears feasible to identify marble through the use of NIR spectroscopy.
Resumo:
The mineral chloritoid collected from the argillite in the bottom of Yaopo Formation of Western Beijing was characterized by mid-infrared (MIR) and near-infrared (NIR) spectroscopy. The MIR spectra showed all fundamental vibrations including the hydroxyl units, basic aluminosilicate framework and the influence of iron on the chloritoid structure. The NIR spectrum of the chloritoid showed combination (ν + δ)OH bands with the fundamental stretching (ν) and bending (δ) vibrations. Based on the chemical component data and the analysis result from the MIR and NIR spectra, the crystal structure of chloritoid from western hills of Beijing, China, can be illustrated. Therefore, the application of the technique across the entire infrared region is expected to become more routine and extend its usefulness, and the reproducibility of measurement and richness of qualitative information should be simultaneously considered for proper selection of a spectroscopic method for the unit cell structural analysis.
Resumo:
The approach to remove greenhouse gases by pumping liquid CO2 several kilometres below the ground implies that many carbonate containing minerals will be formed. Among these minerals, the formation of hydromagnesite, dypingite and nesquehonite are possible, thus necessitating a study of such minerals. These minerals with a hydrotalcite-related formulae have been characterised by a combination of infrared and near infrared spectroscopy. Layered double hydroxides (also known as anionic clays or hydrotalcites) are a group of layered clay minerals described by the general formula: [M1–x2+Mx3+(OH)2]x+[An–]x/n∙mH2O. The infrared spectra of the minerals are characterised by OH and water stretching vibrations. Both the first and second fundamental overtones of these bands are observed in the NIR spectra in the 7030–7235 cm–1 and 10,490–10,570 cm–1 spectral ranges. Intense (CO3)2– symmetrical and anti-symmetrical stretching vibrations confirm the distortion of the carbonate anion. The position of the water bending vibration indicates water is strongly hydrogen-bonded to the carbonate anion in the mineral structure. NIR spectroscopy offers a method for quickly analysing such materials.
Resumo:
Overhead high-voltage power lines are known sources of corona ions. These ions rapidly attach to aerosols to form charged particles in the environment. Although the effect of ions and charged particles on human health is largely unknown, much attention has focused on the increasing exposure as a result of the expanding power network in urban residential areas. However, it is not widely known that a large number of charged particles in urban environments originate from motor vehicle emissions. In this study, for the first time, we compare the concentrations of charged nanoparticles near busy roads and overhead power lines. We show that large concentrations of both positive and negative charged nanoparticles are present near busy roadways and that these concentrations commonly exceed those under high-voltage power lines. We estimate that the concentration of charged nanoparticles found near two freeways carrying around 120 vehicles per minute exceeded the corresponding maximum concentrations under two corona-emitting overhead power lines by as much as a factor of 5. The difference was most pronounced when a significant fraction of traffic consisted of heavy-duty diesel vehicles which typically have high particle and charge emission rates.
Resumo:
This thesis develops and applies an analytical method to treat the blast response of glass façades and studies the influence of controlling parameters such as all component materials and geometric properties, support conditions and energy absorption, and hence establishes a framework for their design for a credible blast event.