256 resultados para Belgica area off Morocco
Resumo:
Backgrounds Whether suicide in China has significant seasonal variations is unclear. The aim of this study is to examine the seasonality of suicide in Shandong China and to assess the associations of suicide seasonality with gender, residence, age and methods of suicide. Methods Three types of tests (Chi-square, Edwards' T and Roger's Log method) were used to detect the seasonality of the suicide data extracted from the official mortality data of Shandong Disease Surveillance Point (DSP) system. Peak/low ratios (PLRs) and 95% confidence intervals (CIs) were calculated to indicate the magnitude of seasonality. Results A statistically significant seasonality with a single peak in suicide rates in spring and early summer, and a dip in winter was observed, which remained relatively consistent over years. Regardless of gender, suicide seasonality was more pronounced in rural areas, younger age groups and for non-violent methods, in particular, self-poisoning by pesticide. Conclusions There are statistically significant seasonal variations of completed suicide for both men and women in Shandong, China. Differences exist between residence (urban/rural), age groups and suicide methods. Results appear to support a sociological explanation of suicide seasonality.
Resumo:
Prevailing video adaptation solutions change the quality of the video uniformly throughout the whole frame in the bitrate adjustment process; while region-of-interest (ROI)-based solutions selectively retains the quality in the areas of the frame where the viewers are more likely to pay more attention to. ROI-based coding can improve perceptual quality and viewer satisfaction while trading off some bandwidth. However, there has been no comprehensive study to measure the bitrate vs. perceptual quality trade-off so far. The paper proposes an ROI detection scheme for videos, which is characterized with low computational complexity and robustness, and measures the bitrate vs. quality trade-off for ROI-based encoding using a state-of-the-art H.264/AVC encoder to justify the viability of this type of encoding method. The results from the subjective quality test reveal that ROI-based encoding achieves a significant perceptual quality improvement over the encoding with uniform quality at the cost of slightly more bits. Based on the bitrate measurements and subjective quality assessments, the bitrate and the perceptual quality estimation models for non-scalable ROI-based video coding (AVC) are developed, which are found to be similar to the models for scalable video coding (SVC).
Resumo:
Traffic generated semi and non volatile organic compounds (SVOCs and NVOCs) pose a serious threat to human and ecosystem health when washed off into receiving water bodies by stormwater. Climate change influenced rainfall characteristics makes the estimation of these pollutants in stormwater quite complex. The research study discussed in the paper developed a prediction framework for such pollutants under the dynamic influence of climate change on rainfall characteristics. It was established through principal component analysis (PCA) that the intensity and durations of low to moderate rain events induced by climate change mainly affect the wash-off of SVOCs and NVOCs from urban roads. The study outcomes were able to overcome the limitations of stringent laboratory preparation of calibration matrices by extracting uncorrelated underlying factors in the data matrices through systematic application of PCA and factor analysis (FA). Based on the initial findings from PCA and FA, the framework incorporated orthogonal rotatable central composite experimental design to set up calibration matrices and partial least square regression to identify significant variables in predicting the target SVOCs and NVOCs in four particulate fractions ranging from >300-1 μm and one dissolved fraction of <1 μm. For the particulate fractions range >300-1 μm, similar distributions of predicted and observed concentrations of the target compounds from minimum to 75th percentile were achieved. The inter-event coefficient of variations for particulate fractions of >300-1 μm were 5% to 25%. The limited solubility of the target compounds in stormwater restricted the predictive capacity of the proposed method for the dissolved fraction of <1 μm.
Resumo:
Understanding the business value of IT has mostly been studied in developed countries, but because most investment in developing countries is derived from external sources, the influence of that investment on business value is likely to be different. We test this notion using a two-layer model. We examine the impact of IT investments on firm processes, and the relationship of these processes to firm performance in a developing country. Our findings suggest that investment in different areas of IT positively relates to improvements in intermediate business processes and these intermediate business processes positively relate to the overall financial performance of firms in a developing country.
Resumo:
The accuracy of measurement of mechanical properties of a material using instrumented nanoindentation at extremely small penetration depths heavily relies on the determination of the contact area of the indenter. Our experiments have demonstrated that the conventional area function could lead to a significant error when the contact depth was below 40. nm, due to the singularity in the first derivation of the function in this region and thus, the resultant unreasonable sharp peak on the function curve. In this paper, we proposed a new area function that was used to calculate the contact area for the indentations where the contact depths varied from 10 to 40. nm. The experimental results have shown that the new area function has produced better results than the conventional function. © 2011 Elsevier B.V.
Resumo:
Conventional rainfall classification for modelling and prediction is quantity based. This approach can lead to inaccuracies in stormwater quality modelling due to the assignment of stochastic pollutant parameters to a rainfall event. A taxonomy for natural rainfall events in the context of stormwater quality is presented based on an in-depth investigation of the influence of rainfall characteristics on stormwater quality. In the research study, the natural rainfall events were classified into three types based on average rainfall intensity and rainfall duration and the classification was found to be independent of the catchment characteristics. The proposed taxonomy provides an innovative concept in stormwater quality modelling and prediction and will contribute to enhancing treatment design for stormwater quality mitigation.
Resumo:
This paper presents the application of a monocular visual SLAMon a fixed-wing small Unmanned Aerial System (sUAS) capable of simultaneous estimation of aircraft pose and scene structure. We demonstrate the robustness of unconstrained vision alone in producing reliable pose estimates of a sUAS, at altitude. It is ultimately capable of online state estimation feedback for aircraft control and next-best-view estimation for complete map coverage without the use of additional sensors.We explore some of the challenges of visual SLAM from a sUAS including dealing with planar structure, distant scenes and noisy observations. The developed techniques are applied on vision data gathered from a fast-moving fixed-wing radio control aircraft flown over a 1×1km rural area at an altitude of 20-100m.We present both raw Structure from Motion results and a SLAM solution that includes FAB-MAP based loop-closures and graph-optimised pose. Timing information is also presented to demonstrate near online capabilities. We compare the accuracy of the 6-DOF pose estimates to an off-the-shelfGPS aided INS over a 1.7kmtrajectory.We also present output 3D reconstructions of the observed scene structure and texture that demonstrates future applications in autonomous monitoring and surveying.
Resumo:
A software tool (DRONE) has been developed to evaluate road traffic noise in a large area with the consideration of network dynamic traffic flow and the buildings. For more precise estimation of noise in urban network where vehicles are mainly in stop and go running conditions, vehicle sound power level (for acceleration/deceleration cruising and ideal vehicle) is incorporated in DRONE. The calculation performance of DRONE is increased by evaluating the noise in two steps of first estimating the unit noise database and then integrating it with traffic simulation. Details of the process from traffic simulation to contour maps are discussed in the paper and the implementation of DRONE on Tsukuba city is presented.
Resumo:
There is a need for an accurate real-time quantitative system that would enhance decision-making in the treatment of osteoarthritis. To achieve this objective, significant research is required that will enable articular cartilage properties to be measured and categorized for health and functionality without the need for laboratory tests involving biopsies for pathological evaluation. Such a system would provide the capability of access to the internal condition of the cartilage matrix and thus extend the vision-based arthroscopy that is currently used beyond the subjective evaluation of surgeons. The system required must be able to non-destructively probe the entire thickness of the cartilage and its immediate subchondral bone layer. In this thesis, near infrared spectroscopy is investigated for the purpose mentioned above. The aim is to relate it to the structure and load bearing properties of the cartilage matrix to the near infrared absorption spectrum and establish functional relationships that will provide objective, quantitative and repeatable categorization of cartilage condition outside the area of visible degradation in a joint. Based on results from traditional mechanical testing, their innovative interpretation and relationship with spectroscopic data, new parameters were developed. These were then evaluated for their consistency in discriminating between healthy viable and degraded cartilage. The mechanical and physico-chemical properties were related to specific regions of the near infrared absorption spectrum that were identified as part of the research conducted for this thesis. The relationships between the tissue's near infrared spectral response and the new parameters were modeled using multivariate statistical techniques based on partial least squares regression (PLSR). With significantly high levels of statistical correlation, the modeled relationships were demonstrated to possess considerable potential in predicting the properties of unknown tissue samples in a quick and non-destructive manner. In order to adapt near infrared spectroscopy for clinical applications, a balance between probe diameter and the number of active transmit-receive optic fibres must be optimized. This was achieved in the course of this research, resulting in an optimal probe configuration that could be adapted for joint tissue evaluation. Furthermore, as a proof-of-concept, a protocol for obtaining the new parameters from the near infrared absorption spectra of cartilage was developed and implemented in a graphical user interface (GUI)-based software, and used to assess cartilage-on-bone samples in vitro. This conceptual implementation has been demonstrated, in part by the individual parametric relationship with the near infrared absorption spectrum, the capacity of the proposed system to facilitate real-time, non-destructive evaluation of cartilage matrix integrity. In summary, the potential of the optical near infrared spectroscopy for evaluating articular cartilage and bone laminate has been demonstrated in this thesis. The approach could have a spin-off for other soft tissues and organs of the body. It builds on the earlier work of the group at QUT, enhancing the near infrared component of the ongoing research on developing a tool for cartilage evaluation that goes beyond visual and subjective methods.
Resumo:
The pollutant impacts of urban stormwater runoff on receiving waters are well documented in research literature. However, it is road surfaces that are commonly identified as the significant pollutant source. This paper presents the outcomes of an extensive program of research into the role of roof surfaces in urban water quality with particular focus on solids, nutrients and organic carbon. The outcomes confirmed that roof surfaces play an important role in influencing the pollutant characteristics of urban stormwater runoff. Pollutant build-up and wash-off characteristics for roads and roof surfaces were found to be appreciably different. The pollutant wash-off characteristics exhibited by roof surfaces show that it influences the first flush phenomenon more significantly than road surfaces. In most urban catchments, as roof surfaces constitutes a higher fraction of impervious area compared to road surfaces, it is important that the pollutant generation role of roof surfaces is specifically taken into consideration in stormwater quality mitigation strategies.