291 resultados para Auxiliares de Audição
Resumo:
Microphone arrays have been used in various applications to capture conversations, such as in meetings and teleconferences. In many cases, the microphone and likely source locations are known \emph{a priori}, and calculating beamforming filters is therefore straightforward. In ad-hoc situations, however, when the microphones have not been systematically positioned, this information is not available and beamforming must be achieved blindly. In achieving this, a commonly neglected issue is whether it is optimal to use all of the available microphones, or only an advantageous subset of these. This paper commences by reviewing different approaches to blind beamforming, characterising them by the way they estimate the signal propagation vector and the spatial coherence of noise in the absence of prior knowledge of microphone and speaker locations. Following this, a novel clustered approach to blind beamforming is motivated and developed. Without using any prior geometrical information, microphones are first grouped into localised clusters, which are then ranked according to their relative distance from a speaker. Beamforming is then performed using either the closest microphone cluster, or a weighted combination of clusters. The clustered algorithms are compared to the full set of microphones in experiments on a database recorded on different ad-hoc array geometries. These experiments evaluate the methods in terms of signal enhancement as well as performance on a large vocabulary speech recognition task.
Resumo:
Digital rights management allows information owners to control the use and dissemination of electronic documents via a machine-readable licence. Documents are distributed in a protected form such that they may only be used with trusted environments, and only in accordance with terms and conditions stated in the licence. Digital rights management has found uses in protecting copyrighted audio-visual productions, private personal information, and companies' trade secrets and intellectual property. This chapter describes a general model of digital rights management together with the technologies used to implement each component of a digital rights management system, and desribes how digital rights management can be applied to secure the distribution of electronic information in a variety of contexts.
Resumo:
While close talking microphones give the best signal quality and produce the highest accuracy from current Automatic Speech Recognition (ASR) systems, the speech signal enhanced by microphone array has been shown to be an effective alternative in a noisy environment. The use of microphone arrays in contrast to close talking microphones alleviates the feeling of discomfort and distraction to the user. For this reason, microphone arrays are popular and have been used in a wide range of applications such as teleconferencing, hearing aids, speaker tracking, and as the front-end to speech recognition systems. With advances in sensor and sensor network technology, there is considerable potential for applications that employ ad-hoc networks of microphone-equipped devices collaboratively as a virtual microphone array. By allowing such devices to be distributed throughout the users’ environment, the microphone positions are no longer constrained to traditional fixed geometrical arrangements. This flexibility in the means of data acquisition allows different audio scenes to be captured to give a complete picture of the working environment. In such ad-hoc deployment of microphone sensors, however, the lack of information about the location of devices and active speakers poses technical challenges for array signal processing algorithms which must be addressed to allow deployment in real-world applications. While not an ad-hoc sensor network, conditions approaching this have in effect been imposed in recent National Institute of Standards and Technology (NIST) ASR evaluations on distant microphone recordings of meetings. The NIST evaluation data comes from multiple sites, each with different and often loosely specified distant microphone configurations. This research investigates how microphone array methods can be applied for ad-hoc microphone arrays. A particular focus is on devising methods that are robust to unknown microphone placements in order to improve the overall speech quality and recognition performance provided by the beamforming algorithms. In ad-hoc situations, microphone positions and likely source locations are not known and beamforming must be achieved blindly. There are two general approaches that can be employed to blindly estimate the steering vector for beamforming. The first is direct estimation without regard to the microphone and source locations. An alternative approach is instead to first determine the unknown microphone positions through array calibration methods and then to use the traditional geometrical formulation for the steering vector. Following these two major approaches investigated in this thesis, a novel clustered approach which includes clustering the microphones and selecting the clusters based on their proximity to the speaker is proposed. Novel experiments are conducted to demonstrate that the proposed method to automatically select clusters of microphones (ie, a subarray), closely located both to each other and to the desired speech source, may in fact provide a more robust speech enhancement and recognition than the full array could.
Resumo:
The focus of this paper questions how the performance place was transformed to a performance space. This major change in distinction holds an ongoing significance to the development of the actors, scenographers, animators, writers and film directors craft within current digitally mediated and interactive performance environments. As part of this discussion this paper traces the crucial seed of the revolution that transformed modern scenographic practice from the droll of the romantic realism of the Victorian stage to the open potential of the performance environment of today. This is achieved through close readings on the practical work of Edward Gordon Craig and Adolphe Appia as well as the scenographic discussions of Chris Baugh.
Resumo:
This paper investigates virtual reality representations of the 1599 Boar’s Head Theatre and the Rose Theatre, two renaissance places and spaces. These models become a “world elsewhere” in that they represent virtual recreations of these venues in as much detail as possible. The models are based on accurate archeological and theatre historical records and are easy to navigate particularly for current use. This paper demonstrates the ways in which these models can be instructive for reading theatre today. More importantly we introduce human figures onto the stage via motion capture which allows us to explore the potential between space, actor and environment. This facilitates a new way of thinking about early modern playwrights’ “attitudes to locality and localities large and small”. These venues are thus activated to intersect productively with early modern studies so that the paper can test the historical and contemporary limits of such research.
Resumo:
This thesis investigates aspects of encoding the speech spectrum at low bit rates, with extensions to the effect of such coding on automatic speaker identification. Vector quantization (VQ) is a technique for jointly quantizing a block of samples at once, in order to reduce the bit rate of a coding system. The major drawback in using VQ is the complexity of the encoder. Recent research has indicated the potential applicability of the VQ method to speech when product code vector quantization (PCVQ) techniques are utilized. The focus of this research is the efficient representation, calculation and utilization of the speech model as stored in the PCVQ codebook. In this thesis, several VQ approaches are evaluated, and the efficacy of two training algorithms is compared experimentally. It is then shown that these productcode vector quantization algorithms may be augmented with lossless compression algorithms, thus yielding an improved overall compression rate. An approach using a statistical model for the vector codebook indices for subsequent lossless compression is introduced. This coupling of lossy compression and lossless compression enables further compression gain. It is demonstrated that this approach is able to reduce the bit rate requirement from the current 24 bits per 20 millisecond frame to below 20, using a standard spectral distortion metric for comparison. Several fast-search VQ methods for use in speech spectrum coding have been evaluated. The usefulness of fast-search algorithms is highly dependent upon the source characteristics and, although previous research has been undertaken for coding of images using VQ codebooks trained with the source samples directly, the product-code structured codebooks for speech spectrum quantization place new constraints on the search methodology. The second major focus of the research is an investigation of the effect of lowrate spectral compression methods on the task of automatic speaker identification. The motivation for this aspect of the research arose from a need to simultaneously preserve the speech quality and intelligibility and to provide for machine-based automatic speaker recognition using the compressed speech. This is important because there are several emerging applications of speaker identification where compressed speech is involved. Examples include mobile communications where the speech has been highly compressed, or where a database of speech material has been assembled and stored in compressed form. Although these two application areas have the same objective - that of maximizing the identification rate - the starting points are quite different. On the one hand, the speech material used for training the identification algorithm may or may not be available in compressed form. On the other hand, the new test material on which identification is to be based may only be available in compressed form. Using the spectral parameters which have been stored in compressed form, two main classes of speaker identification algorithm are examined. Some studies have been conducted in the past on bandwidth-limited speaker identification, but the use of short-term spectral compression deserves separate investigation. Combining the major aspects of the research, some important design guidelines for the construction of an identification model when based on the use of compressed speech are put forward.
Resumo:
Keyword Spotting is the task of detecting keywords of interest within continu- ous speech. The applications of this technology range from call centre dialogue systems to covert speech surveillance devices. Keyword spotting is particularly well suited to data mining tasks such as real-time keyword monitoring and unre- stricted vocabulary audio document indexing. However, to date, many keyword spotting approaches have su®ered from poor detection rates, high false alarm rates, or slow execution times, thus reducing their commercial viability. This work investigates the application of keyword spotting to data mining tasks. The thesis makes a number of major contributions to the ¯eld of keyword spotting. The ¯rst major contribution is the development of a novel keyword veri¯cation method named Cohort Word Veri¯cation. This method combines high level lin- guistic information with cohort-based veri¯cation techniques to obtain dramatic improvements in veri¯cation performance, in particular for the problematic short duration target word class. The second major contribution is the development of a novel audio document indexing technique named Dynamic Match Lattice Spotting. This technique aug- ments lattice-based audio indexing principles with dynamic sequence matching techniques to provide robustness to erroneous lattice realisations. The resulting algorithm obtains signi¯cant improvement in detection rate over lattice-based audio document indexing while still maintaining extremely fast search speeds. The third major contribution is the study of multiple veri¯er fusion for the task of keyword veri¯cation. The reported experiments demonstrate that substantial improvements in veri¯cation performance can be obtained through the fusion of multiple keyword veri¯ers. The research focuses on combinations of speech background model based veri¯ers and cohort word veri¯ers. The ¯nal major contribution is a comprehensive study of the e®ects of limited training data for keyword spotting. This study is performed with consideration as to how these e®ects impact the immediate development and deployment of speech technologies for non-English languages.
Resumo:
This paper considers the use of servo-mechanisms as part of a tightly integrated homogeneous Wireless Multi- media Sensor Network (WMSN). We describe the design of our second generation WMSN node platform, which has increased image resolution, in-built audio sensors, PIR sensors, and servo- mechanisms. These devices have a wide disparity in their energy consumption and in the information quality they return. As a result, we propose a framework that establishes a hierarchy of devices (sensors and actuators) within the node and uses frequent sampling of cheaper devices to trigger the activation of more energy-hungry devices. Within this framework, we consider the suitability of servos for WMSNs by examining the functional characteristics and by measuring the energy consumption of 2 analog and 2 digital servos, in order to determine their impact on overall node energy cost. We also implement a simple version of our hierarchical sampling framework to evaluate the energy consumption of servos relative to other node components. The evaluation results show that: (1) the energy consumption of servos is small relative to audio/image signal processing energy cost in WMSN nodes; (2) digital servos do not necessarily consume as much energy as is currently believed; and (3) the energy cost per degree panning is lower for larger panning angles.
Resumo:
This research explores a new approach to Beckett’s Not I, a work in which the spectator is asked to focus primarily on a human mouth suspended in space eight feet off the ground. The digital reconstitution of the x, y and z axes in Beckett's work has been retitled "?ot I". In "?ot I", the prescribed x, y and z axes of the original have been re-spatialised environmentally, physically and aurally to create an invigorated version of the text. In this work, it is primarily the reconstitution of spatial dynamics and time that are explored. An adaption and series of responses to Samuel Beckett's "Not I", first performed at Melbourne University and Deakin Motion.Lab, Deakin University, 2007
Resumo:
This doctoral thesis comprises three distinct yet related projects which investigate interdisciplinary practice across: music collaboration; mime performance; and corporate communication. Both the processes and underpinning research of these projects explore, expose and exploit areas where disparate and apparently conflicting fields of professional practice successfully and effectively; intersect, interact, and inform each other - rather than conflict - thereby enhancing each, both individually and collectively. Informed by three decades of professional practice across: music; stage performance; television; corporate communication; design; and tertiary education, the three projects have produced innovative, creative, and commercial viable outcomes, manifest in a variety of media including: music; written text; digital, audio/visual; and internet. In exploring new practice and creating new knowledge, these project outcomes clearly demonstrate the value and effectiveness of reconciling disparate fields of practice through the application of inter-disciplinary creativity and innovation to professional practice.